Comparison of MiG-29 and F-16 aircraft in the field of susceptibility to destruction in combat
Abstract
Because the Polish Air Force currently uses F-16 and MiG-29 aircraft, the aim of the study was to conduct a comparison of the susceptibility to destruction in combat of these two aircraft. The first part of the work concerned the analysis of individual critical components, such as: general characteristics of the airframe structure, aircraft engine, flight control system, fuel system, aircraft weapons, radar system. The index of susceptibility to destruction in combat was defined considering the listed critical components and the following types of enemy weapon: aircraft gun, air-to-air missile, anti-aircraft gun, surface-to-air missile. The analysis proved that the aircraft have similar susceptibility to damage in combat, a slight advantage of the F-16 aircraft in this respect was determined. The presented scheme can be used to analyze other aircraft. Proposals of aircraft modifications, directions of further actions, possibilities of using the described method were presented. The method can be used to making decisions by governments regarding the purchase aircraft for their fleets and identify aircraft critical components with high susceptibility to destruction in order to introduce appropriate modifications by military aircraft manufacturers.
Keyword : susceptibility to destruction, air combat, indicator method, military aircraft, MiG-29 aircraft, F-16 aircraft
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Baker, D. (2017). Mikoyan MiG-29 “Fulcrum” owners’ Workshop manual. Haynes Publishing.
Ball, R. E. (2003). The fundamentals of aircraft combat survivability: Analysis and design (2nd ed.). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/4.862519
Davis, S. (2014). General dynamics F-16 Fighting Falcon manual. Hayness Publishing.
Dougherty, M. (2019). Modern air-launched weapons. Amber Books.
Erlandsson, T. (2014). A combat survivability model for evaluating air mission routes in future decision support systems. Orebro University.
Gao, Y., Liu, H., & Tian, Y. (2020). Inverse design of mission success space for combat aircraft contribution evaluation. Chinese Journal of Aeronautics, 33(8), 2189–2203. https://doi.org/10.1016/j.cja.2020.03.039
Gretzyngier, R. (1992). MiG-29. Przegląd Konstrukcji Lotniczych, 6(2).
Grzegorzewski, J. (2002). Samolot myśliwski MIG-29. Typy Broni i Uzbrojenia, 200.
Guo, Y., Gao, Y., Liu, H., & Gao, W. (2017). Mission simulation and stealth effectiveness evaluation based on fighter engagement manager (FEM). DEStech Transactions on Computer Science and Engineering, 328–335. https://doi.org/10.12783/dtcse/cece2017/14488
Hošková-Mayerová, Zieja, M., Woch, M., Tomaszewska, J., & Matyjewski, M. (2018). A method to evaluate an aircraft operational risk. Safety and Reliability – Safe Societies in a Changing World – Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018 (pp. 1441–1446). CRC Press. https://doi.org/10.1201/9781351174664-182
Jaiswal, N. K. (1997). Military operations research. Quantitative decision making. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-6275-7
Kalwat, M. (2017). Purchase of multirole fighter aircraft for Poland as a guarantee of air space security and strenghtening international position. Safety & Defense, 3(2017), 19–24. https://doi.org/10.37105/sd.13
Kozakiewicz, A. (2009). Analiza porównawcza osiągów turbinowych silników odrzutowych samolotów bojowych obecnie użytkowanych w RP. Biuletyn WAT, LVIII(2), 65–83.
Kozanidis, G., Liberopoulos, G., & Pitsilkas, C. (2010). Flight and maintenance planning of military aircraft for maximum fleet availability. Military Operations Research, 15(1). https://doi.org/10.5711/morj.15.1.53
Królik, M. (2011). Płatowiec i silnik samolotu F-16. Wydawnictwo WSOSP.
Lee, J., & Mitici, M. (2020). An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets. Reliability Engineering and System Safety, 202, 107052. https://doi.org/10.1016/j.ress.2020.107052
Makrygianni, M. J. (2018). Aircraft accident evaluation using quality assessement tools. Aviation, 22(2), 67–76. https://doi.org/10.3846/aviation.2018.5995
Matusiak, W. (1996). F-16 C. Przegląd Konstrukcji Lotniczych, 28(2).
Milkiewicz, A. (2002). Możliwości manewrowe samolotu z elektrycznym systemem sterowania na przykładzie samolotu F-16. Przegląd WLOP, 6, 42–49.
Papis, M., & Matyjewski, M. (2016). Risk analysis in case of fire on PZL BRYZA using the event tree analysis / Analiza ryzyka w przypadku pożaru samolotu PZL BRYZA z wykorzystaniem metody drzewa zdarzeń. Journal of KONBiN, 38(1), 245–270. https://doi.org/10.1515/jok-2016-0026
Stępień, S., Szajnar, S., & Jasztal, M. (2017). Problems of military aircraft crew’s safety in condition of enemy counteraction. Eksploatacja I Niezawodnosc – Maintenance and Reliability, 19(3), 441–446. https://doi.org/10.17531/ein.2017.3.15
Tomaszek, H., & Wróblewski, M. (2001). Podstawy oceny efektywności eksploatacji systemów uzbrojenia lotniczego. Bellona.
Verhoeff, M., Verhagen, W. J. C., & Curran, R. (2015). Maximizing operational readiness in military aviation by optimizing flight and maintenance planning. Transportation Research Procedia, 10(July), 941–950. https://doi.org/10.1016/j.trpro.2015.09.048
Wang, J., Fan, K., Su, Y., Liang, Sh., & Wang, W. (2008). Air combat effectiveness assessment of military aircraft using a fuzzy AHP and TOPSIS methodology. In 2008 Asia Simulation Conference – 7th International Conference on System Simulation and Scientific Computing (pp. 655–662). Beijing, China. https://doi.org/10.1109/ASC-ICSC.2008.4675442
Wasilewski, A. (2004). Samolot myśliwski F-16 C/D Block 52+. Typy Broni i Uzbrojenia, 210.
Wazny, M., & Wojtowicz, K. (2008). The analysis of the military aircraft maintains system and the modernization proposal. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 39(3), 4–11.
Zheng, W., & Feiguo, L. (2017). Terminal efficiency of fragment air-to-air missile using Monte Carlo method. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) (pp. 730–735). Prague, Czech Republic. https://doi.org/10.1109/ICMAE.2017.8038740
Żurek, J., Zieja, M., & Ziółkowski, J. (2018). The analysis of the helicopter technical readiness by means of the Markov processes. In The 6th International Conference on Integrity Reliability-Failure (IRF) (pp. 1387–1400). Lisbon, Portugal.