Comparison of two methods to calculate external loads at flight in continuous turbulence
Abstract
The external loads from the continuous turbulence on the elastic high aspect ratio wing of the transport category aircraft are calculated by Dynamics of Turbulence Air (DTA) and Interactive Multidisciplinary Aircraft Design (IMAD) methods. The response to continuous turbulence was determined taking into account the requirements of CS-25.341(b). The model of the aircraft structure is directed by symmetrical spatial beam schematization. Determination of aerodynamic forces and moments was performed using the methods of linear computational aerodynamics: the panel method of Doublet-Lattice and Constant Pressures (DLM/CPM) and the method of circulation. Comparison of the results of load determination showed that, in general, the values of the loads calculated using IMAD are lower than the values calculated using DTA. Therefore, when designing an aircraft, it is advisable to combine these methods: calculate the loads using IMAD, as a more functional method, and then the loads obtained in the critical points of the calculated flight area should be confirmed using the DTA method. Thus, this study determined the difference between the results of the calculation of loads from the continuous turbulence on the elastic wing of the transport category aircraft using DTA and IMAD methods.
Keyword : continuous turbulence, aircraft wing, external loads, spatial-beam schematization, method of circulation, doublet-lattice method, constant pressures method
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Bondar, Y. І. (2014). Metod privedenija raschjotnyh ajerodinamicheskih harakteristik k rezul’’tatam drenazhnyh ispytanij modeli samoljota transportnoj kategorii [Method of reducing design aerodynamic characteristics to the results of drain tests of a transport category aircraft model]. Vestnik of the Samara State Aerospace University, 1(43), 22–29. https://doi.org/10.18287/1998-6629-2014-0-1(43)-22-29
Boutemedjet, A., Samardžić, M., Rebhi, L., Rajić, Z., & Mouadaet, T. (2018). UAV aerodynamic design involving genetic algorithm and artificial neural network for wing preliminary computation. Aerospace Science and Technology, 84, 464–483. https://doi.org/10.1016/j.ast.2018.09.043
Chuban, V. D., Ivanteyev, V. I., Chudayev, B. J., Avdeyev, E. P., & Shvilkin, V. A. (2002). Numerical simulation of flutter validated by flight-test data for TU-204 aircraft. Computers and Structures, 80(32), 2551–2563. https://doi.org/10.1016/S0045-7949(02)00221-3
European Union Aviation Safety Agency. (2020). Certification specifications and acceptable means of compliance for large Aeroplanes CS-25. Amendment 26. https://www.easa.europa.eu/sites/default/files/dfu/cs-25_amendment_26_0.pdf
Federal Aviation Administration. (2014). Advisory Circular 25.341-1 – dynamic gust loads. https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_25_341-1.pdf
Fomichev, P. A., Lavro, N. A., & Vakulenko, S. V. (2014). Sootnoshenie mezhdu integral’’nymi povtoryaemostyami amplitud i maksimumov peregruzki pri polete v turbulentnoi atmosphere [Relationship between cumulative probabilities of equivalent amplitudes and maximums of load factors during the flight in turbulent atmosphere]. Civil Aviation High Technologies, 199, 101–107.
Giesseler, H.-G., Kopf, M., Varutti, P., Faulwasser, T., & Findeisen, R. (2012). Model predictive control for gust load alleviation. IFAC Proceedings, 45(17), 27–32. https://doi.org/10.3182/20120823-5-NL-3013.00049
Guimarâes-Neto, A. B., da Silva, R. G. A., & Paglione, P. (2014). Control-point-placement method for the aerodynamic correction of the vortex- and the doublet-lattice methods. Aerospace Science and Technology, 37, 117–129. https://doi.org/10.1016/j.ast.2014.05.007
Hevko, B. A., & Bondar, Yu. І. (2019, December). An algorithm for determining loads when flying in disquiet air. In Materialy naukovo-praktychnoi’ konferencii’ studentiv ta molodyh vchenyh [Materials of scientific and practical conference of students and young scientists], Avia-raketobuduvannja: perspektyvy ta naprjamky rozvytku [Aircraft rocket science: prospects and directions of development] (p. 7). Kyiv, Ukraine. https://arb.kpi.ua/uk/science/conferences/naukovo-praktychna-konferentsiia-avia-raketobuduvannya-perspektyvy-ta-napryamky-rozvytku
Hoblit, F. M. (1988). Gust loads on aircraft: Concepts and applications. AIAA Education series. Aerospace Research Central. https://doi.org/10.2514/4.861888
Ivanteev, V. I., Snisarenko, T. V., & Chuban, V. D. (2004). Interaktivnoe mnogodisciplinnoe proektirovanie letatelnyh apparatov. Versija 10.6 [Interactive multi-disciplinary aircraft design. Ver.10.6]. TsAGI.
Ivanteev, V. I., & Steba, M. A. (1988). Metody rascheta sobstvennyh form i chastot kolebanij samoleta na osnove integral’nyh uravnenij dvizhenija [Methods for calculating the natural forms and frequencies of aircraft oscillations based on integral equations of motion]. Trudy TsAGI, 2405, 22–35.
Karpel, M., Moulin, B., & Chen, P. C. (2005). Dynamic response of aeroservoelastic systems to Gust excitation. Journal of Aircraft, 42(5), 1264–1272. https://doi.org/10.2514/1.6678
Kim, T.-U., & Hwang, I. H. (2004). Reliability analysis of composite wing subjected to gust loads. Composite Structures, 66(1–4), 527–531. https://doi.org/10.1016/j.compstruct.2004.04.072
Kuznetsov, O. A. (2008). Dinamicheskie nagruzki na samolet [Dynamic aircraft loads]. Fizmatlit.
Lone, M., & Dussart, G. (2019). Impact of spanwise non-uniform discrete gusts on civil aircraft loads. The Aeronautical Journal, 123(1259), 93–120. https://doi.org/10.1017/aer.2018.148
Mahran, M., Hani Negm, H., & Adel El-Sabbagh, A. (2015). Aero-elastic characteristics of tapered plate wings. Finite Elements in Analysis and Design, 94, 24–32. https://doi.org/10.1016/j.finel.2014.09.009
Marqui, C. R., Bueno, D. D., Goes, L. C. S., & Gonçalves, P. J. P. (2017). A reduced order state space model for aeroelastic analysis in time domain. Journal of Fluids and Structures, 69, 428–440. https://doi.org/10.1016/j.jfluidstructs.2017.01.010
Murua, J., Palacios, R., & Graham, J. M. R. (2012). Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics. Progress in Aerospace Sciences, 55, 46–72. https://doi.org/10.1016/j.paerosci.2012.06.001
Reytier, T., Bes, C., Marechal, P., Bianciardi, M., & Santgerma, A. (2012). Generation of correlated stress time histories from continuous turbulence Power Spectral Density for fatigue analysis of aircraft structures. International Journal of Fatigue, 42, 147–152. https://doi.org/10.1016/j.ijfatigue.2011.08.013
Rodden, W. P., & Johnson, E. H. (1994). MSC/NASTRAN Aeroelastic Analysis User’s Guide. The MacNeal-Schwendler Corp. Los Angeles.
Rodden, W. P., Taylor, P. F., & McIntosh, S. C. (1998). Further refinement of the subsonic doublet-lattice method. Journal of Aircraft, 35(5), 720–727. https://doi.org/10.2514/2.2382
Rodden, W. P., Taylor, P. F., McIntosh, S. C., & Baker, M. L. (1999). Further convergence studies of the enhanced doublet-lattice method. Journal of Aircraft, 36(4), 682–688. https://doi.org/10.2514/2.2511
Tang, B., Wu, Z., & Yang, C. (2016). Aeroelastic scaling laws for gust load alleviation control system. Chinese Journal of Aeronautics, 29(1), 76–90. https://doi.org/10.1016/j.cja.2015.12.001
Voss, G., Schaefer, D., & Vidy, C. (2019). Investigation on flutter stability of the DLR-F19/SACCON configuration. Aerospace Science and Technology, 93, 105320. https://doi.org/10.1016/j.ast.2019.105320
Wright, J. R., & Cooper, J. E. (2008). Introduction to aircraft aeroelasticity and loads. John Wiley & Sons. https://doi.org/10.2514/4.479359
Yang, Y., Yang, Ch., & Wu, Zh. (2019). Aeroelastic dynamic response of elastic aircraft with consideration of two-dimensional discrete gust excitation. Chinese Journal of Aeronautics, 33(4), 1228–1241. https://doi.org/10.1016/j.cja.2019.09.008
ZONA Technology. (2017). ZAERO Version 9.3 Theoretical Manual. ZONA Technology, Inc., ZONA 01-17.0, Scottsdale, AZ. https://www.zonatech.com/Documentation/ZAERO%209.3_THEO_Full_Electronic.pdf