Share:


Modeling of pavement roughness utilizing artificial neural network approach for Laos national road network

    Mohamed Gharieb Affiliation
    ; Takafumi Nishikawa Affiliation
    ; Shozo Nakamura Affiliation
    ; Khampaseuth Thepvongsa Affiliation

Abstract

The International Roughness Index (IRI) has become the reference scale for assessing pavement roughness in many highway agencies worldwide. This research aims to develop two Artificial Neural Network (ANN) models for Double Bituminous Surface Treatment (DBST) and Asphalt Concrete (AC) pavement sections using Laos Pavement Management System (PMS) database for National Road Network (NRN). The final database consisted of 269 and 122 observations covering 1850 km of DBST NRN and 718 km of AC NRN, respectively. The proposed models predict IRI as a function of pavement age and Cumulative Equivalent Single-Axle Load (CESAL). The obtained data were randomly divided into training (70%), validation (15%), and testing (15%) datasets. The statistical evaluation results of the training dataset reveal that both ANN models (DBST and AC) have good prediction ability with high values of coefficient of determination (R2 = 0.96 and 0.94) and low values of Mean Absolute Error (MAE = 0.23 and 0.19) and Mean Squared Percentage Error (RMSPE = 7.03 and 9.98). Eventually, the goodness of fit of the proposed ANN models was compared with the Multiple Linear Regression (MLR) models previously developed under the same conditions. The results show that ANN models yielded higher prediction accuracy than MLR models.

Keyword : International Roughness Index (IRI), Laos pavement management system (PMS), artificial neural network (ANN), backpropagation algorithm, double bituminous surface treatment (DBST), asphalt concrete (AC), pavement age, cumulative equivalent single-axle load (CESAL), pavement performance model

How to Cite
Gharieb, M., Nishikawa, T., Nakamura, S., & Thepvongsa, K. (2022). Modeling of pavement roughness utilizing artificial neural network approach for Laos national road network. Journal of Civil Engineering and Management, 28(4), 261–277. https://doi.org/10.3846/jcem.2022.15851
Published in Issue
Mar 8, 2022
Abstract Views
1424
PDF Downloads
866
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

American Association of State Highway and Transportation Officials. (2012). Pavement management guide (2nd ed.). USA.

Abaza, K. A. (2016). Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. International Journal of Pavement Engineering, 17, 253–264. https://doi.org/10.1080/10298436.2014.993185

Abaza, K. A. (2018). Empirical-Markovian model for predicting the overlay design thickness for asphalt concrete pavement. Road Materials and Pavement Design, 19, 1617–1635. https://doi.org/10.1080/14680629.2017.1338188

Abd El-Hakim, R., & El-Badawy, S. (2013). International roughness index prediction for rigid pavements: an artificial neural network application. Advanced Materials Research, 723, 854–860. https://doi.org/10.4028/www.scientific.net/AMR.723.854

Abdelaziz, N., Abd El-Hakim, R. T., El-Badawy, S. M., & Afify, H. A. (2020). International roughness index prediction model for flexible pavements. International Journal of Pavement Engineering, 21, 88–99. https://doi.org/10.1080/10298436.2018.1441414

Abulizi, N., Kawamura, A., Tomiyama, K., & Fujita, S. (2016). Measuring and evaluating of road roughness conditions with a compact road profiler and ArcGIS. Journal of Traffic and Transportation Engineering (English Edition), 3, 398–411. https://doi.org/10.1016/j.jtte.2016.09.004

Adeli, H. (2001). Neural networks in civil engineering: 1989–2000. Computer-Aided Civil and Infrastructure Engineering, 16, 126–142. https://doi.org/10.1111/0885-9507.00219

Al-Mansour, A. I., & Al-Swailem, S. S. (1999). Pavement condition data collection and evaluation of Riyadh Main Street network. Journal of King Saud University - Engineering Sciences, 11(1), 1–17. https://doi.org/10.1016/S1018-3639(18)30987-5

Albuquerque, F. S., & Núñez, W. P. (2011). Development of roughness prediction models for low-volume road networks in northeast Brazil. Transportation Research Record: Journal of the Transportation Research Board, 2205, 198–205. https://doi.org/10.3141/2205-25

Alin, A. (2010). Multicollinearity. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 370–374. https://doi.org/10.1002/wics.84

ARA. (2001). Guide for mechanistic-empirical design of new and rehabilitated pavement structures. Appendix OO-1: Background and preliminary smoothness prediction models for flexible pavements. National Cooperative Highway Research Program.

Asakawa, H., Nagayama, T., Fujino, Y., Nishikawa, T., Akimoto, T., & Izumi, K. (2012). Development of a simple pavement diagnostic system using dynamic responses of an ordinary vehicle. Journal of Japan Society of Civil Engineers, Ser. E1 (Pavement Engineering), 68, 20–31. https://doi.org/10.2208/jscejpe.68.20

Asian Infrastructure Investment Bank. (2009). Lao People’s Democratic Republic: National Road 13 improvement and maintenance project (PD000066-LAO).

Choi, J. H., Adams, T. M., & Bahia, H. U. (2004). Pavement roughness modeling using back-propagation neural networks. Computer-Aided Civil and Infrastructure Engineering, 19, 295–303. https://doi.org/10.1111/j.1467-8667.2004.00356.x

Chou, S. F., & Pellinen, T. K. (2005). Assessment of construction smoothness specification pay factor limits using artificial neural network modeling. Journal of Transportation Engineering, 131, 563–570. https://doi.org/10.1061/(ASCE)0733-947X(2005)131:7(563)

Demuth, H., & Beale, M. (1992). Neural network toolbox for use with MATLAB: User’s guide. Mathworks, Natick, Mass.

Douangphachanh, V., & Oneyama, H. (2014). A study on the use of smartphones under realistic settings to estimate road roughness condition. EURASIP Journal on Wireless Communications and Networking, 2014, 114. https://doi.org/10.1186/1687-1499-2014-114

Fujino, Y., Kitagawa, K., Furukawa, T., & Ishii, H. (2005). Development of vehicle intelligent monitoring system (VIMS). In Proceedings of Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems (Vol. 5765). https://doi.org/10.1117/12.601727

Garson, D. G. (1991). Interpreting neural network connection weights. AI Expert, 6(4), 46–51.

George, K. P., Rajagopal, A .S., & Lim, L. K. (1989). Models for predicting pavement deterioration. Transportation Research Record, 1215.

Georgiou, P., Plati, C., & Loizos, A. (2018). Soft computing models to predict pavement roughness: A comparative study. Advances in Civil Engineering, 2018, 5939806. https://doi.org/10.1155/2018/5939806

Gharieb, M., & Nishikawa, T. (2021). Development of roughness prediction models for Laos national road network. CivilEng, 2, 158–173. https://doi.org/10.3390/civileng2010009

Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9, 143–151. https://doi.org/10.1016/0954-1810(94)00011-S

Gupta, A., Kumar, P., & Rastogi, R. (2011). Pavement deterioration and maintenance model for low volume roads. International Journal of Pavement Research and Technology, 4, 195–202. https://doi.org/10.6135/ijprt.org.tw/2011.4(4).195

Hamdi, Hadiwardoyo, S. P., Correia, A. G., Pereira, P., & Cortez, P. (2017). Prediction of surface distress using neural networks. AIP Conference Proceedings, 1855, 040006. https://doi.org/10.1063/1.4985502

Hossain, M., Gopisetti, L. S. P., & Miah, M. S. (2020). Artificial neural network modelling to predict international roughness index of rigid pavements. International Journal of Pavement Research and Technology, 13, 229–239. https://doi.org/10.1007/s42947-020-0178-x

Huang, Y., & Moore, R. K. (1997). Roughness level probability prediction using artificial neural networks. Transportation Research Record: Journal of the Transportation Research Board, 1592, 89–97. https://doi.org/10.3141/1592-11

Japan International Cooperation Agency (JICA), & Mitsubishi Research Institute (2013). Information collection and confirmation survey on road and bridge maintenance management (Final report, Summary).

Jokić, A., Grahovac, J., Dodić, J., Dodić, S., Popov, S., & Vucurovic, D. (2011). Interpreting the neural networkfor prediction of fermentation of thick juice from sugar beet processing. Acta Periodica Technologica, 42, 241–249. https://doi.org/10.2298/APT1142241J

Justo-Silva, R., Ferreira, A., & Flintsch, G. (2021). Review on machine learning techniques for developing pavement performance prediction models. Sustainability, 13, 5248. https://doi.org/10.3390/su13095248

Kaloop, M., El-Badawy, S., Ahn, J., Sim, H.-B., Hu, J., & Abd El-Hakim, R. (2020). A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of International Roughness Index of rigid pavements. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2020.1776281

Kırbaş, U., & Karaşahin, M. (2016). Performance models for hot mix asphalt pavements in urban roads. Construction and Building Materials, 116, 281–288. https://doi.org/10.1016/j.conbuildmat.2016.04.118

La Torre, F., Domenichini, L., & Darter, M. I. (1998). Roughness prediction model based on the artificial neural network approach. In Fourth International Conference on Managing Pavements.

Laos Ministry of Public Works and Transport. (2020). Summary of road network statistics year. Laos.

Laos Ministry of Public Works and Transport. (2018). Road design manual. Laos.

Lin, J.-D., Yau, J.-T., & Hsiao, L.-H. (2003). Correlation analysis between international roughness index (IRI) and pavement distress by neural network. In 82nd Annual Meeting of the Transportation Research Board (pp. 12–16), Transportation Research Board, Washington, D.C.

Liu, L. (2013). A methodology for developing performance-related specifications for pavement preservation treatments [Dissertation]. Texas A&M University, Texas, USA.

Makendran, C., Murugasan, R., & Velmurugan, S. (2015). Performance prediction modelling for flexible pavement on low volume roads using multiple linear regression analysis. Journal of Applied Mathematics, 2015, 192485. https://doi.org/10.1155/2015/192485

Mazari, M., & Rodriguez, D. D. (2016). Prediction of pavement roughness using a hybrid gene expression programming-neural network technique. Journal of Traffic and Transportation Engineering (English Edition), 3, 448–455. https://doi.org/10.1016/j.jtte.2016.09.007

Mosa, A. M. (2017). Neural network for flexible pavement maintenance and rehabilitation. Applied Research Journal, 3, 114–129.

Múčka, P. (2017). International Roughness Index specifications around the world. Road Materials and Pavement Design, 18, 929–965. https://doi.org/10.1080/14680629.2016.1197144

Nguyen, H.-L., Pham, B. T., Son, L. H., Thang, N. T., Ly, H.-B., Le, T.-T., Ho, L. S., Le, T.-H., & Tien Bui, D. (2019). Adaptive network based fuzzy inference system with meta-heuristic optimizations for international roughness index prediction. Applied Sciences, 9, 4715. https://doi.org/10.3390/app9214715

Nourani, V., & Sayyah Fard, M. (2012). Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Advances in Engineering Software, 47, 127–146. https://doi.org/10.1016/j.advengsoft.2011.12.014

Obunguta, F., & Matsushima, K. (2020). Optimal pavement management strategy development with a stochastic model and its practical application to Ugandan national roads. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2020.1857759

Odoki, J. B., & Kerali, G. R. H. (2001). Volume four: Analytical framework and model descriptions. Highway Development and Management Model HDM-4 (Version 1.2). World Road Association.

Olowosulu, A. T., Kaura, J. M., Murana, A. A., & Adeke, P. T. (2021). Development of framework for performance prediction of flexible road pavement in Nigeria using Fuzzy logic theory. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2021.1922907

Owusu‐Ababio, S. (2002). Effect of neural network topology on flexible pavement cracking prediction. Computer-Aided Civil and Infrastructure Engineering, 13, 349–355. https://doi.org/10.1111/0885-9507.00113

Pérez-Acebo, H., Gonzalo-Orden, H., Findley, D. J., & Rojí, E. (2021). Modeling the international roughness index performance on semi-rigid pavements in single carriageway roads. Construction and Building Materials, 272, 121665. https://doi.org/10.1016/j.conbuildmat.2020.121665

Pérez-Acebo, H., Linares-Unamunzaga, A., Rojí, E., & Gonzalo-Orden, H. (2020). IRI performance models for flexible pavements in two-lane roads until first maintenance and/or rehabilitation work. Coatings, 10(2), 97. https://doi.org/10.3390/coatings10020097

Pérez-Acebo, H., Mindra, N., Railean, A., & Rojí, E. (2019). Rigid pavement performance models by means of Markov Chains with half-year step time. International Journal of Pavement Engineering, 20, 830–843. https://doi.org/10.1080/10298436.2017.1353390

Sandra, A. K., & Sarkar, A. K. (2013). Development of a model for estimating International Roughness Index from pavement distresses. International Journal of Pavement Engineering, 14, 715–724. https://doi.org/10.1080/10298436.2012.703322

Sayers, M. W., Gillespie, T. D., & Queiroz, C. A. V. (1986a). International experiment to establish correlations and standard calibration methods for road roughness measurements (Technical paper number 45). The World Bank, Washington, DC, USA.

Sayers, W. M., Gillespie, T. D., & Paterson, W. D. O. (1986b). Guidelines for conducting and calibrating road roughness measurements (Technical paper number 45). The World Bank, Washington, DC, USA.

Shahnazari, H., Tutunchian, M. A., Mashayekhi, M., & Amini, A. A. (2012). Application of soft computing for prediction of pavement condition index. Journal of Transportation Engineering, 138, 1495–1506. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000454

Shekharan, A. R. (1999). Assessment of relative contribution of input variables to pavement performance prediction by artificial neural networks. Transportation Research Record: Journal of the Transportation Research Board, 1655, 35–41. https://doi.org/10.3141/1655-06

Sidess, A., Ravina, A., & Oged, E. (2020). A model for predicting the deterioration of the international roughness index. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2020.1804062

Smith, K., & Ram, P. (2016). Measures and specifying pavement smoothness. FHWA, Washington, DC, USA.

Sollazzo, G., Fwa, T. F., & Bosurgi, G. (2017). An ANN model to correlate roughness and structural performance in asphalt pavements. Construction and Building Materials, 134, 684–693. https://doi.org/10.1016/j.conbuildmat.2016.12.186

Surendrakumar, K., Prashant, N.,& Mayuresh, P. (2013). Application of Markovian probabilistic process to develop a decision support system for pavement maintenance management. International Journal of Scientific & Technology Research, 2, 295–303.

Teomete, E., Bayrak, M. B., & Agarwal, M. (2004). Use of artificial neural networks for predicting rigid pavement roughness. In 2004 Transpor-tation Scholars Conference, Iowa State University, Ames, USA.

Terzi, S. (2013). Modeling for pavement roughness using the ANFIS approach. Advances in Engineering Software, 57, 59–64. https://doi.org/10.1016/j.advengsoft.2012.11.013

Uddin, W. (2006). Pavement management systems. In T. F. Fwa (Ed.), The handbook of highway engineering. Taylor & Francis.

Xu, G., Bai, L., & Sun, Z. (2014). Pavement deterioration modeling and prediction for Kentucky interstate and highways. In Proceedings of the 2014 Industrial and Systems Engineering Research Conference (pp. 993–1002).

Yamany, M. S., & Abraham, D. M. (2021). Hybrid approach to incorporate preventive maintenance effectiveness into probabilistic pavement per-formance models. Journal of Transportation Engineering, Part B: Pavements, 147, 4020077. https://doi.org/10.1061/JPEODX.0000227

Yamany, M. S., Abraham, D. M., & Labi, S. (2021). Comparative analysis of Markovian methodologies for modeling infrastructure system per-formance. Journal of Infrastructure Systems, 27, 4021003. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000604

Zang, K., Shen, J., Huang, H., Wan, M., & Shi, J. (2018). Assessing and mapping of road surface roughness based on GPS and accelerometer sensors on bicycle-mounted smartphones. Sensors, 18, 914. https://doi.org/10.3390/s18030914

Ziari, H., Sobhani, J., Ayoubinejad, J., & Hartmann, T. (2015). Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods. International Journal of Pavement Engineering, 17, 776–788. https://doi.org/10.1080/10298436.2015.1019498