Share:


Experimental research of petroleum products evaporation

Abstract

Oil products are usually released into the environment during transportation of oil, from storage, oil bases or accidents, accounting for about 60% of total soil pollution. Heavy metals, phenols, cyanides, aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene) also enter the soil together with oil products. After the contamination enters the soil, it affects the pH of the soil, the activity of the biota weakens due to the toxic elements that react with oxygen, the soil degradation increases. In the course of the dissemination of these pollutants, not only the soil, but also groundwater is contaminated – pollution by oil products and heavy metals creates 53% of all groundwater pollution. The aim of the research is to determine the lowest possible optimal temperature by choosing the temperature range of the heating temperature (100−300 °C) and to investigate the dependence of evaporation of oil products on the heating time. The minimum temperature is required to preserve the soil’s properties, reduce the amount of energy used and the cost of the method. During the heat treatment of the selected oil products, the vapor passes through the condenser and is collected in the form of a liquid, avoiding leaks, which is a safe way if toxic substances are potentially exposed at the site of heating (the method safely removes pollutants from mixtures). It has been established that in the temperature range 250−300 °C, clean oil evaporates intensively and achieve 90.1−97.1% efficiency over 2 hours and the maximum evaporation rate is at the first hour, in the case of used oil, an efficiency of 38.6−60.6% is achieved and vapor intensity at maximum after 2 hours of evaporation. This heating technology can be used to clean heavy soil fractions from contaminated oil products, and comparatively low temperatures (250−300 °C) will have less harm to soil properties than high-temperature methods (burning, glazing, pyrolysis).


Article in Lithuanian.


Naftos produktų garavimo eksperimentiniai tyrimai


Santrauka


Naftos produktai į aplinką dažniausiai patenka transportuojant naftą, iš saugyklų, naftos bazių arba avarijų metu ir tai sudaro apie 60 % visos dirvožemio taršos. Šiais atvejais kartu su nafta ir jos produktais (tepalais, dyzelinu, benzinu, žibalu, mazutu ir kt.) į dirvožemį patenka ir sunkiųjų metalų, fenolių, cianidų, aromatinių angliavandenilių (benzeno, tolueno, etilbenzeno, ksileno). Teršalai, patekę į dirvožemį, paveikia dirvožemio pH, susilpnina biotos veiklą dėl toksiškų elementų, reaguojančių su deguonimi, poveikio, didina dirvožemio degradaciją. Vykstant minėtų teršalų sklaidai, užteršiamas ne tik dirvožemis, bet ir požeminis vanduo. Tarša naftos produktais ir sunkiaisiais metalais sudaro 53 proc. visos požeminio vandens taršos. Tyrimo tikslas – pasirinkus terminio kaitinimo temperatūrų diapazoną (100–300 °C) nustatyti žemiausią galimą optimalią temperatūrą ir ištirti naftos produktų garavimo priklausomybę nuo kaitinimo laiko. Minimali temperatūra reikalinga siekiant išsaugoti dirvožemio savybes, sumažinti vartojamos energijos kiekį ir metodo sąnaudas. Pasirinkto naftos produktų (tepalų) terminio kaitinimo metu garai pereina per kondensatorių ir surenkami skysčio pavidalu, išvengiant pratekėjimų. Tai yra saugus būdas, jeigu kaitinimo vietoje galimai yra patekusių toksiškų medžiagų (metodas saugiai šalina teršalų mišinius). Nustatyta, kad 250–300 °C temperatūrų diapazone švarūs tepalai garuoja intensyviai, per 2 val. pasiekiamas 90,1–97,1 % garavimo efektyvumas, garavimo intensyvumas didžiausias pirmąją valandą; garuojant vartotiems tepalams, pasiekiamas 38,6–60,6 % efektyvumas, garavimo intensyvumas yra didžiausias antrąją valandą. Šią kaitinimo technologiją galima pritaikyti sunkios frakcijos naftos produktais užterštam dirvožemiui valyti, o palyginti žema temperatūra (250–300 °C) mažiau pakenks dirvožemio savybėms, nei taikant aukštų temperatūrų metodus (deginimą, stiklinimą, pirolizę).


Reikšminiai žodžiai: naftos produktai, terminis kaitinimas, sunkiai laki frakcija, optimali temperatūra, garavimas.

Keyword : petroleum products, thermal desorption, heavy particle fraction, optimal temperature, evaporation

How to Cite
Aleknaitė, J., Paliulis, D., & Vaiškūnaitė, R. (2019). Experimental research of petroleum products evaporation. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 11. https://doi.org/10.3846/mla.2019.10581
Published in Issue
Oct 1, 2019
Abstract Views
1402
PDF Downloads
638
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Acosta-González, A., Martirani-von Abercon, S., Rosseló-Móra, R., Wittich, R., & Marqués, S. (2015). The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill. Environmental Science and Pollution Research, 22(20), 15200-15214. https://doi.org/10.1007/s11356-015-4458-y

Badawi, A. F., Cavalieri, E. L., & Rogan, E. G. (2000). Effect of chlorinated hydrocarbons on expression of cytochrome P450 1A1, 1A2 and B1 and 2- and 4-hydroxylation of 17β-estradiol in female Sprague-Dawley rats. Carcinogenesis, 21(8), 1593-1599. https://doi.org/10.1093/carcin/21.5.593

Baker, R. S., & Kuhlman, M. (2002). A description of the mechanisms of in-situ thermal destruction (ISTD) reactions. In Al-Ekabi, H. (Ed.), Current practices in oxidation and reduction technologies for soil and groundwater: proceedings of the 2nd international conference on oxidation and reduction technologies for soil and groundwater (pp. 17-21), Toronto, Ontario, Canada.

Beškoski, V. P., Gojgić-Cvijović, G., Milić, J., Ilić, M., Miletić, S., Šolević, T., & Vrvić, M. M. (2011). Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil) – a field experiment. Chemosphere, 83(1), 34-40. https://doi.org/10.1016/j.chemosphere.2011.01.020

Brakorenko, N. N., & Korotchenko, T. V. (2015). Impact of petroleum products on soil composition and physical-chamical properties. Journal of Earth and Environmental Science, 33, 1-5. https://doi.org/10.1088/1755-1315/33/1/012028

Bucalá, V., Saito, H., Howard, J. B., & Peters, W. A. (1996). Products compositions and release rates from intense thermal treatment of soil. Industrial & Engineering Chemistry Research, 35(8), 2725-2734. https://doi.org/10.1021/ie9505726

Falciglia, P. P., Giustra, M. G., & Vagliasindi, F. G. A. (2011). Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics. Journal of Hazardous Materials, 185(1), 392-400. https://doi.org/10.1016/j.jhazmat.2010.09.046

Gestel, K. V., Mergaert, J., Swings, J., Coosemans, J., & Ryckeboer, J. (2003). Bioremediation of diesel-contaminated soil by composting with biowaste. Environmental Pollution, 125(3), 361-368. https://doi.org/10.1016/S0269-7491(03)00109-X

Yanxun, S., Yani, W., Hui, Q., & Yuan, F. (2011). Analysis of the groundwater and soil pollyion by oil leakage. Procedia Environmental Sciences, 11(Part B), 939-944. https://doi.org/10.1016/j.proenv.2011.12.144

Juteau, P., Bisaillon, J., Lépine, F., Ratheau, V., Beaudet, R., & Villemur, R. (2003). Improving the biotreatment of hydrocarbons-contaminated soils addition of activated sludge taken from the wastewater treatment facilities of an oil refinery. Biodegradation, 14(1), 31-40. https://doi.org/10.1023/A:1023555616462

Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71(2), 95-122. https://doi.org/10.1016/j.jenvman.2004.02.003

Merino, J., Piña, J., Errazu, A. F., & Bucalá, V. (2003). Fundamental study of thermal treatment of soil. Soil and Sediment Contamination, 12(3), 14-41. https://doi.org/10.1080/713610981

O’Brien, P. L., DeSutter, T. M., Casey, F. X. M., Derby, N. E., & Wick, A. F. (2015). Implications of using thermal desoprtion to remediate contaminated agricultural soil: physical characteristics and hydraulic processes. Journal of Environmental Quality, 45(4), 1430-1436. https://doi.org/10.2134/jeq2015.12.0607

Panagos, P., Hiederer, R., Van Liedekerke, M., & Bampa, F. (2013). Estimating soil organic carbon in Europe based on data collected through and European network. Ecological Indicators, 24, 439-450. https://doi.org/10.1016/j.ecolind.2012.07.020

Prenafeta-Boldú, F. X., Ballerstedt, H., Gerritse, J., & Grotenhuis, J. T. C. (2004). Bioremediation of BTEX hydrocarbons: effect of soil inoculation with the toluene-growing fungus Cladophialophora sp. strain T1. Biodegradation, 15(1), 59-65. https://doi.org/10.1023/B:BIOD.0000009973.53531.96

Riser-Roberts, E. (1998). Remediation of petroleum contaminated soils: biological, physical and chemical processes. Boca Raton: CRC Press. https://doi.org/10.1201/9781420050578

Scullion, J. (2006). Remediating polluted soils. Naturwissenschaften, 93(2), 51-65. https://doi.org/10.1007/s00114-005-0079-5

Shabir, G., Afzal, M., Anwar, F., Tahseen, R., & Khalid, M. Z. (2008). Biodegradation of kerosene in soil by mixed bacterial culture under different nutrient conditions. International Biodeterioration & Biodegradation, 52(2), 161-166. https://doi.org/10.1016/j.ibiod.2007.06.003

Si-Zhong, Y., Hui-Jun, J., Zhi, W., Rui-Xia, H., Yan-Jun, J., Xiu-Mei, L., & Shao-Peng, Y. (2009). Bioremediation of oil spills in cold environments: a review. Pedosphere, 19(3), 371-381. https://doi.org/10.1016/S1002-0160(09)60128-4

Vidonish, J. E., Zygourakis, K., Masiello, C. A., Gao, X., Mathieu, J., & Alvarez, P. J. (2016a). Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons. Environmental Science & Technology, 50(5), 498-506. https://doi.org/10.1021/acs.est.5b02620

Vidonish, J. E., Zygourakis, K., Masiello, C. A., Sabadell, G., & Alvarez, J. J. P. (2016b). Thermal treatment of hydrocarbon-impacted soils: a reciew of technology Innovation for sustainable remediation. Engineering, 2(4), 426-437. https://doi.org/10.1016/J.ENG.2016.04.005

Viñas, M., Grifoll, M., Sabaté, J., & Solanas, A. M. (2002). Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. Industrial Microbiology and Biotechnology, 28, 252-260. https://doi.org/10.1038/sj.jim.7000236