Share:


Investigation of properties of synthetic bone substitutes

Abstract

The article compares different materials of bone substitutes – bioceramics: hydroxyapatite (HA), tricalcium phosphate (CaP) and polymer: polylactide (PLA). In the paper determines which of the substitutes is mechanically similar to the natural bone. Universal testing machine for tensile, compression was used for research. The properties of the test substances were determined by a compression and hardness test. Comparative tests are conducted with HA, CaP, PLA which were kept for 3 weeks in physiological saline and with natural pig bone. The mechanical properties of PLA specimens produced by 3D printers have been found to be similar to natural bone. When held in saline, PLA does not change its properties and dissolves less quickly than tricalcium phosphate.


Article in Lithuanian.


Sintetinių kaulo pakaitalų savybių tyrimas


Santrauka


Straipsnyje lyginamos skirtingos kaulų pakaitalų medžiagos – biokeramika (hidroksiapatitas, HA; trikalcio fosfatas, CaP) ir polimeras (polilaktidas, PLA). Nustatoma, kuris iš pakaitalų yra mechaniškai panašus į natūralų kaulą. Tyrimams naudota universali tempimo, gniuždymo mašina „Mecmesin MultiTest 2.5-i“. Tiriamų medžiagų savybėms nustatyti atlikti gniuždymo ir kietumo bandymai. Atlikti lyginamieji bandymai su tris savaites fiziologiniame tirpale mirkytais HA, CaP, PLA bandiniais ir natūraliu kiaulės kaulu. Nustatyta, kad 3D spausdintuvu pagamintų PLA bandinių mechaninės savybės yra panašios į natūralaus kaulo. Fiziologiniame tirpale jo savybės nesikeičia ir jis tirpsta ne taip greitai, lyginant su trikalcio fosfatu.


Reikšminiai žodžiai: sintetiniai kaulo pakaitalai, polilaktidas (PLA), trikalcio fosfatas (CaP), hidroksiapatitas (HA).

Keyword : synthetic bone substitutes, polylactide (PLA), tricalcium phosphate (CaP), hydroxyapatite (HA)

How to Cite
Voinič, L., Šešok, A., Stonkus, R., & Šešok, N. (2021). Investigation of properties of synthetic bone substitutes. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 13. https://doi.org/10.3846/mla.2021.14165
Published in Issue
Mar 18, 2021
Abstract Views
482
PDF Downloads
410
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Horowitz, R. A., Mazor, Z., Foitzik, C., Prasad, H., Rohrer, M., & Palti, A. (2010). β-tricalcium phosphate as bone substitute material: properties and clinical applications. Journal of Osseointegrati, 2(2), 61–68.

Kooser, A. (2013). 3D-printed implant replaces 75 percent of patient’s skull. CNET. https://www.cnet.com/news/3d-printed-implant-replaces-75-percent-of-patients-skull/

Kooser, A. (2014). 3D-printed face implant gets FDA approval. CNET. https://www.cnet.com/news/3d-printed-face-implant-gets-fda-approval/

Miyamoto, S., Takaoka, K., Okada, T., Yoshikawa, H., Hashimoto, J., Suzuki, S., & Ono, K. (1993). Polylactic acidpolyethylene glycol block copolymer. A new biodegradable synthetic carrier for bone morphogenetic protein. Clinical Orthopaedics and Related Research, 294, 333–343.
https://doi.org/10.1097/00003086-199309000-00050

Moe, K. S., & Weisman, R. A. (2001). Resorbable fixation in facial plastic and head and neck reconstructive surgery: an initial report on polylactic acid implants. The Laryngoscope, 111(10), 1697–1701. https://doi.org/10.1097/00005537-200110000-00005

Nilsson, M., Wang, J.-S., Wielanek, L., Tanner, K. E., & Lidgren, L. (2004). Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. The Journal of Bone and Joint Surgery, 86-B(1), 120–125.
https://doi.org/10.1302/0301-620X.86B1.14040

Saitoh, H., Takata, T., Nikai, H., Shintani, H., Hyon, S.-H., & Ikada, Y. (1994). Effect of polylactic acid on osteoinduction of demineralized bone: preliminary study of the usefulness of polylactic acid as a carrier of bone morphogenetic protein.
Journal Oral Rehabilitation, 21(4), 431–438.
https://doi.org/10.1111/j.1365-2842.1994.tb01157.x

Tovar, N., Witek, L., Atria, P., Sobieraj, M., Bowers, M., Lopez, C. D., Cronstein, B. N., & Coelho, P. G. (2018). Form and functional repair of long bone using 3D-printed bioactive scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 12(9), 1986–1999. https://doi.org/10.1002/term.2733

Wang, M., Laurencin, C., & Yu, X. (2019). Encyclopedia of biomedical engineering (Vol. 1). Elsevier.

Xu, H., Han, D., Dong, J.-S., Shen, G.-X., Chai, G., Yu, Z.-Y., Lang, W.-J., & Ai, S.-T. (2010). Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects. The International Journal of Medical Robotics and Computer Assisted Surgery, 6(1), 66–72.
https://doi.org/10.1002/rcs.290

Xu, N., Ye, X., Wei, D., Zhong, J., Chen, Y., Xu, G., & He, D. (2014). 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Applied Materials & Interfaces, 6(17), 14952−14963. https://doi.org/10.1021/am502716t