Share:


FEM analysis of energy loss due to wave propagation for micro-particle impacting substrate with high velocities

Abstract

The impact between particles and material surface is a micro-scaled physical phenomenon found in various technological processes and in the study of the mechanical properties of materials. Design of materials with desired properties is a challenging issue for most industries. And especially in aviation one of the most important factors is mass. Recently with the innovations in 3D printing technologies, the importance of this phenomenon has increased. Numerical simulation of multi-particle systems is based on considering binary interactions; therefore, a simplified but as much accurate as possible particle interaction model is required for simulations.
Particular cases of axisymmetric particle to substrate contact is modelled at select impact velocities and using different layer thicknesses. When modelling the particle impact at high contact velocity, a substrate thickness dependent change in the restitution coefficient was observed. This change happens is due to elastic waves and is important both to coating and 3D printing technologies when building layers of different properties materials.


Article in English.


Mikrodalelės, smogiančios į pagrindą dideliu greičiu, energijos nuostolio dėl bangų sklidimo BEM analizė


Santrauka


Smūgis tarp dalelių ir medžiagos paviršiaus yra mikromasto fizikinis reiškinys, aptinkamas įvairiuose technologiniuose procesuose ir tiriant medžiagų mechanines savybes. Norimų savybių medžiagų projektavimas yra sudėtingas uždavinys daugelyje pramonės šakų. Aviacijoje ypač svarbus faktorius yra masė. Pastaruoju metu tobulėjant 3D spausdinimo technologijoms šio reiškinio svarba išauga. Daugiadalelinių sistemų skaitinis modeliavimas pagrįstas dalelių porų sąveikų vertinimu, todėl simuliacijoms reikalingas supaprastintas, bet kuo tikslesnis dalelių sąveikos modelis.
Šiame darbe nagrinėjami keli dalelių ir pagrindo kontakto atvejai tarp skirtingu greičiu judančios dalelės ir skirtingo storio pagrindo. Modeliuojant dalelės ir pagrindo sąveiką, esant dideliam kontakto greičiui, buvo pastebėtas nuo pagrindo storio priklausomas restitucijos koeficiento pokytis. Šis pokytis atsiranda dėl tampriųjų bangų ir yra svarbus tiek medžiagos padengimo, tiek 3D spausdinimo technologijoms kaupiantis skirtingų savybių medžiagų sluoksniams.


Reikšminiai žodžiai: dalelės ir sienos sąveika, pagrindo storis, visiškai tamprus smūgis, didelio greičio kontaktas, normalinis kontaktas, tampriosios bangos, restitucijos koeficientas.

Keyword : particle-wall interaction, substrate thickness, perfectly elastic collision, high velocity contact, normal contact, elastic waves, coefficient of restitution

How to Cite
Jočbalis, G. (2022). FEM analysis of energy loss due to wave propagation for micro-particle impacting substrate with high velocities. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 14. https://doi.org/10.3846/mla.2022.15178
Published in Issue
Jan 11, 2022
Abstract Views
373
PDF Downloads
340
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aman, S., Mueller, P., Tomas, J., Kozhar, S., Dosta, M., & Heinrich, S. (2016). Combined viscoelastic and elastic wave dissipation mechanism at low velocity impact. Advanced Powder Technology, 27(4), 1244–1250. https://doi.org/10.1016/j.apt.2016.04.012

Bae, C.-J., Diggs, A. B., & Ramachandran, A. (2018). 6 – Quantification and certification of additive manufacturing materials and processes. In J. Zhang & Y.-G. Jung (Eds.), Additive manufacturing: Materials, processes, quantifications and applications. Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-12-812155-9.00006-2

Boettcher, R., Eichmann, S., & Mueller, P. (2019). Influence of viscous damping and elastic waves on energy dissipation during impacts. Chemical Engineering Science, 199, 571–587. https://doi.org/10.1016/j.ces.2019.01.036

Boettcher, R., Kunik, M., Eichmann, S., Russell, A., & Mueller, P. (2017a). Revisiting energy dissipation due to elastic waves at impact of spheres on large thick plates. International Journal of Impact Engineering, 104, 45–54. https://doi.org/10.1016/j.ijimpeng.2017.02.012

Boettcher, R., Russell, A., & Mueller, P. (2017b). Energy dissipation during impacts of spheres on plates: Investigation of developing elastic flexural waves. International Journal of Solids and Structures, 106–107, 229–239. https://doi.org/10.1016/j.ijsolstr.2016.11.016

Luding, S., Clément, E., Blumen, A., Rajchenbach, J., & Duran, J. (1994). Anomalous energy dissipation in molecular-dynamics simulations of grains: The “detachment” effect. Physical Review E, 50(5), 4113–4122. https://doi.org/10.1103/PhysRevE.50.4113

Müller, P., Böttcher, R., Russell, A., Trüe, M., Aman, S., & Tomas, J. (2016). Contact time at impact of spheres on large thin plates. Advanced Powder Technology, 27(4), 1233–1243. https://doi.org/10.1016/j.apt.2016.04.011

Seifried, R., Schiehlen, W., & Eberhard, P. (2005). Numerical and experimental evaluation of the coefficient of restitution for repeated impacts. International Journal of Impact Engineering, 32(1–4), 508–524. https://doi.org/10.1016/j.ijimpeng.2005.01.001

Wang, X., Feng, F., Klecka, M. A., Mordasky, M. D., Garofano, J. K., El-Wardany, T., Nardi, A., & Champagne, V. K. (2015). Characterization and modeling of the bonding process in cold spray additive manufacturing. Additive Manufacturing, 8, 149–162. https://doi.org/10.1016/j.addma.2015.03.006

Weir, G., & Tallon, S. (2005). The coefficient of restitution for normal incident, low velocity particle impacts. Chemical Engineering Science, 60, 3637–3647. https://doi.org/10.1016/j.ces.2005.01.040

Xd, T. X., & Xd, D. X. (2017). A size-dependent viscoelastic normal contact model for particle collision. International Journal of Impact Engineering, 106, 120–132. https://doi.org/10.1016/j.ijimpeng.2017.03.020

Yokoyama, K., Watanabe, M., Kuroda, S., Gotoh, Y., Schmidt, T., & Gärtner, F. (2006). Simulation of solid particle impact behavior for spray processes. Materials Transactions, 47(7), 1697–1702. https://doi.org/10.2320/matertrans.47.1697

Zener, C. (1941). The intrinsic inelasticity of large plates. Physical Review, 59(8), 669–673. https://doi.org/10.1103/PhysRev.59.669