Share:


The evaluation of road infrastructure for self-driving vehicles

Abstract

The article deals with the problems of the use of self-driving vehicles (SDV) on public the adaptation of road infrastructures well as with, the necessity and objectives of assessment, and the experience of foreign countries in this field. The main factors influencing for SDV were analyzed. An evaluation model of infrastructure adaptation for SDV has been developed, allowing rational planning and selection of the most appropriate selfdriving public transport routes. In order to efficiently integrate SDV into transport systems, it is recommended to evaluate the potential route alternatives using the SAW method and also to use the efficiency indicators proposed in the thesis and their significance. After analyzing the theoretical and practical aspects of road infrastructure adaptation for SDV conclusions and suggestions are given.


Article in Lithuanian.


Kelių infrastruktūros pritaikymo savivaldėms transporto priemonėms vertinimas


Santrauka


Straipsnyje nagrinėjamos savivaldžių transporto priemonių (STP) naudojimo viešuosiuose keliuose ir kelių infrastruktūros pritaikymo jų eismui problemos, vertinimo būtinumas ir tikslai, užsienio šalių patirtis šioje srityje. Išnagrinėti pagrindiniai faktoriai, turintys įtaką savivaldžių automobilių eismui. Sukurtas STP infrastruktūros pritaikymo vertinimo modelis, leidžiantis racionaliai planuoti bei parinkti tinkamiausius savivaldžių viešojo transporto priemonių maršrutus. Siekiant efektyviai integruoti STP į susisiekimo sistemas, rekomenduojama potencialias maršrutų alternatyvas vertinti taikant SAW metodą ir taip pat naudoti darbe pasiūlytus efektyvumo rodiklius bei jų reikšmingumus. Išnagrinėjus teorinius ir praktinius kelių infrastruktūros pritaikymo STP vertinimo aspektus, pateikiamos išvados ir siūlymai.


Reikšminiai žodžiai: savivaldis automobilis, savivaldė transporto priemonė, miestų infrastruktūra, rodikliai, keliai, daugiakriteris vertinimas, SAW.

Keyword : self-driving cars, self-driving vehicle, urban infrastructure, indicators, roads, multi-criteria evaluation, SAW

How to Cite
Kondratovič, V., Čygas, D., & Juodvalkienė, E. (2023). The evaluation of road infrastructure for self-driving vehicles. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 15. https://doi.org/10.3846/mla.2023.19428
Published in Issue
Sep 6, 2023
Abstract Views
365
PDF Downloads
249
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Atkins. (2016). Research on the impacts of connected and autonomous vehicles (CAVs) on traffic flow. Stage 2: Traffic modelling and analysis technical report. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/530093/impacts-of-connected-and-autonomous-vehicles-on-traffic-flow-technical-report.pdf

Berger, R. (2014). Autonomous driving. https://www.rolandberger.com/en/Publications/Autonomous-driving.html

Campbell, M., Egerstedt, M., How, J. P., & Murray, R. M. (2010). Autonomous driving in urban environments: Approaches, lessons and challenges. Philosophical Transactions of the Royal Society a Mathematical, Physical and Engineering Sciences, 368, 4649–4672. https://doi.org/10.1098/rsta.2010.0110

European Commission. (2016). A European strategy on Cooperative Intelligent Transport Systems, a milestone towards cooperative, connected and automated mobility (COM) 2016. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016DC0766

Ginevičius, R. ir Podvezko, V. (2008). Daugiakriterinio vertinimo būdų suderinamumas. Business: Theory and Practice, 9(1), 73–80. https://doi.org/10.3846/1648-0627.2008.9.73-80

Infrastructure Partnerships Australia. (2017). Automated vehicles: Do we know which road to take? http://infrastructure.org.au/wp-content/uploads/2017/09/AV-paper-FINAL.pdf

Intini, P., Colonna, P., Berloco, N., & Ranieri, V. (2019). Rethinking the main road design concepts for future Automated Vehicles Native Roads. European Transport - Trasporti Europei, 73(3), 1–28. https://www.scopus.com/record/display.uri?eid=2-s2.0-85078774558&origin=inward

Jakimavičius, M. (2008). Multi-criteria assessment of urban areas transport systems development according to sustainability [Doctoral dissertation, Vilnius Gediminas Technical University]. Lithuanian Academic Electronic Library. https://vb.vgtu.lt/object/elaba:1737844/1737844.pdf

Konstantinopoulou, L., & Ljubotina, L. (2020). D7.2: Other initiatives to meet the needs of automated cars. SLAIN: Saving Lives Assessing and Improving TEN-T Road Network Safety. https://eurorap.org/wp-content/uploads/2020/12/SLAIN-D7.2-under-review-by-INEA.pdf

Kurk Lietuvai. (2017). Savivaldžių transporto priemonių eksploatavimas Lietuvos keliuose atsižvelgiant į investuotojo ir vartotojo poreikius. http://kurklt.lt/wp-content/uploads/2017/08/Savivaldziu-strategija-ir-veiskmu-planas-L-Ginkute-ir-M-Siavris.pdf

Lengyel, H., Tettamanti, T., & Szalay, Z. (2020). Conflicts of automated driving with conventional traffic infrastructure. IEEE Access, 8, 163280–163297. https://doi.org/10.1109/ACCESS.2020.3020653

Liu, Y., Tight, M., Sun, Q., & Kang, R. (2019). A systematic review: Road infrastructure requirement for Connected and Autonomous Vehicles (CAVs). Journal of Physics: Conference Series, 1187(4), 042073. https://doi.org/10.1088/1742-6596/1187/4/042073

Othman, K. (2021). Impact of autonomous vehicles on the physical infrastructure: Changes and challenges. Designs, 5(3), 40. https://doi.org/10.3390/designs5030040

Palevičius, V. (2014). Lengvųjų automobilių stovėjimo aikštelių mieste vertinimas daugiatiksliais metodais [Daktaro disertacija, Vilniaus Gedimino technikos universitetas]. VGTU talpykla. https://doi.org/10.20334/2269-M

Palevičius, V., Zapolskytė, S., & Damidavičius, J. (2018, November 22–23). Alternative travel planning by autonomous vehicles [Conference presentation]. International Scientific and Technical Conference “Highways: Safety and Relability”, Minsk, Belarus.

Pendleton, S. D., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y. H., Rus, D., & Ang, M. H. (2017). Perception, planning, control, and coordination for autonomous vehicles. Machines, 5(1), 6. https://doi.org/10.3390/machines5010006

Schwall, M., Daniel, T., Victor, T., Favaro, F., & Hohnhold, H. (2020). Waymo public road safety performance data. CoRR abs/2011.0. http://refhub.elsevier.com/S1366-5545(22)00366-0/h0940

Shladover, S. E., & Bishop, R. (2015). Road transport automation as a public–private enterprise. In Transportation Research Board Conference Proceedings (pp. 40–64), Washington District of Columbia, United States.

Tengilimoglu, O., Carsten, O., & Wadud, Z. (2023). Implications of automated vehicles for physical road environment: A comprehensive review. Transportation Research Part E: Logistics and Transportation Review, 169, 102989. https://doi.org/10.1016/j.tre.2022.102989

Zavadskas, E. K. ir Kaklauskas, A. (1996). Pastatų sistemotechninis įvertinimas. Technika.

Zavadskas, E. K., Turskis, Z., Ustinovičius, L., & Sevcenko, G. (2010). Attributes weights determining peculiarities in multiple attribute decision making methods. Engineering Economics, 21(1), 32–43.