Share:


Research of wastewater tertiary treatment

Abstract

Small individual household wastewater treatment plants not always operate well. Consequently, the concentrations of ammonium nitrogen and phosphate phosphorus are exceeded. The aim of the work was to found the most effective material for wastewater tertiary treatment and propose environmentally friendly ways to solve fresh water problem. Three filter fillings (foam-glass, zeolite and biochar) were tested. As a result, we have got a following conclusion, foam-glass removed phosphate phosphorus most effectively (efficacy – 14−91%) and against ammonium nitrogen, comparatively effective was zeolite (efficacy – 29−100%).


Article in English.


Tretinio nuotekų valymo tyrimai


Santrauka


Individualaus buitinių nuotekų valymo įrenginiai ne visada dirba efektyviai. Dėl to fiksuojami nitratų azoto, amonio azoto, bendrojo azoto, bendrojo fosforo ir fosfatų fosforo koncentracijų išvalytose nuotekose viršijimai. Darbo tikslas surasti efektyvias medžiagas tretiniam nuotekų valymui ir pasiūlyti šiai problemai spręsti aplinkai draugiškas technologijas, kad išvalytos nuotekos nepakenktų aplinkos kokybei. Buvo tirti trys filtro užpildai (pustiklis, ceolitas, bioanglis). Gauti rezultatai ir išvados, kad pustiklis efektyviau (efektyvumas – 14−91%) šalina iš nuotekų fosfatų fosforą, o ceolitas – amonio azotą (efektyvumas – 29−100 %).


Reikšminiai žodžiai: tretinis nuotekų valymas, bendrojo fosforo ir bendrojo azoto valymas, ceolitas, pustiklis, bioanglis.

Keyword : tertiary treatment, phosphorus and ammonium removal, zeolite, foam-glass, biochar

How to Cite
Tabatadze, N., Vaiškūnaitė, R., & Mažeikienė, A. (2018). Research of wastewater tertiary treatment . Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.3250
Published in Issue
Sep 28, 2018
Abstract Views
3231
PDF Downloads
542
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Achilli, A., Cath, T. Y., Marchand, E. A., & Childress, A. E. (2009). The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination, 239(1-3), 10-21. https://doi.org/10.1016/j.desal.2008.02.022

Choi, H. (2015). Intensified production of microalgae and removal of nutrient using a microalgae membrane bioreactor (MMBR). Applied Biochemistry and Biotechnology, 175(4), 2195-2205. https://doi.org/10.1007/s12010-014-1365-5

Mažeikienė, A., Valentukevičienė, M., Rimeika, M., Matuzevičius, A. B., & Dauknys, R. (2008). Removal of nitrates and ammonium ions from water using natural sorbent zeolite (clinoptilolite). Journal of Environmental Engineering and Landscape Management, 16(1), 38-44. https://doi.org/10.3846/1648-6897.2008.16.38-44

Miladinovic, N., & Weatherley, L. R. (2008). Intensification of ammonia removal in a combined ion-exchange and nitrification column. Chemical Engineering Journal, 135(1-2), 15-24. https://doi.org/10.1016/j.cej.2007.02.030

Praveen, P., & Loh, K. C. (2015). Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Applied Biochemistry and Biotechnology, 99(23), 10345-10354. https://doi.org/10.1007/s00253-015-6896-3

Sirmerova, M., Prochazkova, G., Siristova, L., Kolska, Z., & Branyik, T. (2013). Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. Journal of Applied Phycology, 25(6), 1687-1695. https://doi.org/10.1007/s10811-013-0015-6

Wu, J., Yang, Y. S., & Lin, J. (2005). China advanced tertiary treatment of municipal wastewater using raw and modified diatomite. Journal of Hazardous Materials, B127, 196-203. https://doi.org/10.1016/j.jhazmat.2005.07.016

Xu, M., Bernards, M., & Hu, Z. (2014). Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor. Bioresource Technology, 153, 383-387. https://doi.org/10.1016/j.biortech.2013.12.026