Share:


Experimental investigations of hydrogen effects on performance and emissions of renewable diesel fueled RCCI

Abstract

The article presents the study of hydrogen effects on performance, combustion and emissions characteristics of renewable diesel fueled single cylinder CI engine with common rail injection system in RCCI mode. The renewable diesel fuels as the HRF are the HVO and it blend with petrol diesel further named PRO Diesel, investigated in this study. The purpose of this investigation was to examine the influence of the LRF – hydrogen addition to the HRF on combustion phases, engine performance, efficiency, and exhaust emissions. HES was changed within the range from 0 to 35%. Hydrogen injected through PFI during intake stroke to the combustion chamber, where it created homogeneous mixture with air. The HRF was directly injected into combustion chamber using electronic controlled unit. Tests were performed at both fixed and optimal injection timings at low, medium and nominal engine load. After analysis of the engine bench results, it was observed that lean hydrogen – HRF mixture does not support the flame propagation and efficient combustion. While at the rich fuel mixture and with increasing hydrogen fraction, the combustion intensity concentrate at the beginning of the combustion process and shortened the ignition delay phase. Decrease of CO, CO2 and smoke opacity was observed with increase of hydrogen amounts to the engine. However, increase of the NO concentration in the engine exhaust gases was observed.


Article in Lithuanian.


Vandenilio įtaka energiniams ir emisijos rodikliams alternatyviu dyzelinu veikiančiame RCCI variklyje – eksperimentinis tyrimas


Santrauka


Straipsnyje pateiktas tyrimas apie vandenilio įtaką vieno cilindro slėginio uždegimo variklio energiniams parametrams ir deginių sudėčiai, kuriame alternatyvūs dyzeliniai degalai įpurškiami akumuliatorine įpurškimo sistema „Common rail“, varikliui veikiant RCCI režimu. Šiame tyrime buvo naudojami aukšto cetaninio skaičiaus alternatyvus dyzelinis degalas HVO ir jo mišinys su dyzelinu, toliau vadinamu PRO Diesel. Šio tyrimo tikslas – išbandyti žemo cetaninio skaičiaus degalo – vandenilio – įtaką aukšto cetaninio skaičiaus alternatyvaus dyzelinio degalo HVO degimo fazėms, variklio veikimo efektyvumui ir deginių kiekiui. Vandenilio energtinė dalis mišinyje buvo keičiama nuo 0 iki 35 %. Vandenilis buvo tiekiamas įsiurbimo fazės metu, įsiurbimo kanalu į degimo kamerą, kurioje jis, susimaišęs su oru, sudaro homogeninį mišinį. Aukšto cetaninio skaičiaus degalas HVO buvo tiesiogiai įpurškiamas į degimo kamerą, įpurškimo momentą ir trukmę valdant elektroniniu būdu. Bandymai buvo atliekami nekeičiant įpurškimo kampo ir nustačius optimalų įpurškimo kampą, esant žemai, vidutinei ir nominaliajai variklio apkrovai. Išnagrinėjus bandymo rezultatus buvo pastebėta, kad, degant liesam vandenilio-HVO mišiniui, liepsna plinta lėtai ir mišinys dega neveiksmingai. Esant riebiam degalų mišiniui ir didinant vandenilio energijos dalį, degimo intensyvumas koncentruojasi degimo proceso pradžioje ir sutrumpėja uždegimo gaišties trukmė. Buvo pastebėta, kad CO, CO2 ir kietųjų dalelių sumažėjo didinant vandenilio kiekį, tačiau padidėjo NO koncentracija variklio išmetamosiose dujose.


Reikšminiai žodžiai: vandenilis, RCCI, HVO, NExBTL, PRO Diesel, MFB, degimo procesas, deginių emisija, detonacija.

Keyword : hydrogen, RCCI, HVO, NExBTL, PRO Diesel, MFB, combustion, emission, abnormal combustion

How to Cite
Juknelevičius, R. (2018). Experimental investigations of hydrogen effects on performance and emissions of renewable diesel fueled RCCI. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.4593
Published in Issue
Dec 21, 2018
Abstract Views
768
PDF Downloads
527
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a renewable diesel fuel: trade-off between nox, particulate emission, and fuel consumption of a heavy duty engine. SAE Technical Paper 2008-01-2500.

Aldhaidhawi, M., Chiriac, R., Bădescu, V., Descombes, G., & Podevin, P. (2017). Investigation on the mixture formation, combustion characteristics and performance of a Diesel engine fueled with Diesel, Biodiesel B20 and hydrogen addition. International Journal of Hydrogen Energy, 42, 16793-16807. https://doi.org/10.1016/j.ijhydene.2017.01.222

Baltacioglu, M. K., Arat, H. T., Ozcanli, M., & Aydin, K. (2016). Experimental comparison of pure hydrogen and HHO (hydroxy) enriched biodiesel (B10) fuel in a commercial diesel engine. International Journal of Hydrogen Energy, 41, 8347-8353. https://doi.org/10.1016/j.ijhydene.2015.11.185

Barrios, C. C., Domínguez-Sáez, A., & Hormigo, D. (2017). Influence of hydrogen addition on combustion characteristics and particle number and size distribution emissions of a TDI diesel engine. Fuel, 199, 162-168. https://doi.org/10.1016/j.fuel.2017.02.089

Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63, 66-76. https://doi.org/10.1016/j.applthermaleng.2013.10.052

Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. https://doi.org/10.1016/j.enconman.2015.04.046

Bhardwaj, O. P., Lüers, B., Holderbaum, B., Körfer, T., Pischinger, S., & Honkannen, M. (2014). Utilization of HVO fuel properties in a high efficiency combustion system: Part 2: Relationship of Soot Characteristics with its Oxidation Behavior in DPF. SAE International Journal of Fuels and Lubricants, 7(3), 979-994, 2014. https://doi.org/10.4271/2014-01-2846

Chen, P. C., Wang, W. C., Roberts, W. L., & Fang, T. (2013). Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system. Fuel, 103, 850-861. https://doi.org/10.1016/j.fuel.2012.08.013

Engman, A., Hartikka, T., Honkanen, M., Kiiski, U., Kuronen, & Lehto, K. (2016). Neste renewable diesel handbook. Espoo: Neste Proprietary Publication.

Erkkila, K., Nylund, N. O., Hulkkone, T., Tilli, A., Mikkonen, S., Saikkonen, P., Makinen, R., & Amberia, A. (2011). Emission performance of paraffinic HVO diesel fuel in heavy duty vehicles. SAE paper 2011-01-1966, 2011. https://doi.org/10.4271/2011-01-1966

Ewphun, P.-P., Tan Vo, Ch., Srichai, P., Charoenphonphanich, Ch., Sato, S., & Kosaka, H. (2017). Combustion characteristics of hydrotreated vegetable oil – diesel blend under EGR and supercharged conditions. International Journal of Automotive Technology, August 2017, 18(4), 643-652. https://doi.org/10.1007/s12239-017-0064-y

Grab-Rogalinski, K., & Szwaja, S. (2016). The combustion properties analysis of various liquid fuels based on crude oil and renewables. IOP Conference Series: Materials Science and Engineering, 148(1), 012066. https://doi.org/10.1088/1757-899X/148/1/012066

Hilbers, T. J., Sprakel, L. M. J., van den Enk, L. B. J., Zaalberg, B., van den Berg, H., & van der Ham, L. G. J. (2015). Green Diesel from Hydrotreated Vegetable Oil Process Design Study. Chemical Engineering Technology, 38(4), 651-657. https://doi.org/10.1002/ceat.201400648

Imperato, M., Tilli, A., Sarjovaara, T., & Larmi, M. (2011). Largebore compression-ignition engines: high NOx reduction achieved at low load with hydro-treated vegetable oil. SAE paper 2011-01-1956, 2011.

Kalsi, S. S., & Subramanian, K. A. (2017). Experimental investigations of effects of hydrogen blended CNG on performance, combustion and emissions characteristics of a biodiesel fueled reactivity controlled compression ignition engine (RCCI). International Journal of Hydrogen Energy, 42, 4548-4560. https://doi.org/10.1016/j.ijhydene.2016.12.147

Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2009). Experiments and modeling of dual-fuel HCCI and PCCI combustion using In-Cylinder fuel blending. SAE paper, 2009-01-2647. https://doi.org/10.4271/2009-01-2647

Labeckas, G., Slavinskas, S., & Mažeika, M. (2014). The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine. Energy Conversion and Management, 79, 698-720. https://doi.org/10.1016/j.enconman.2013.12.064

Lehto, K., Elonheimo, A., Hakkinen, K., Sarjovaara, T., & Larmi, M. (2011). Emission reduction using hydrotreated vegetable oil (HVO) with miller timing and EGR in diesel combustion. SAE paper 2011-01-1955, 201.

Li, J., Yang, W. M., Goh, T. N., An, H., & Maghbouli, A. (2014). Study on RCCI (reactivity controlled compression ignition) engine by means of statistical experimental design. Energy, 78, 777-787. https://doi.org/10.1016/j.energy.2014.10.071

Li, J., Yang, W., & Zhou, D. (2017). Review on the management of RCCI engines. Renewable and Sustainable Energy Reviews, 69, 65-79. https://doi.org/10.1016/j.rser.2016.11.159

Li, Y., Jia, M., Liu, Y., & Xie, M. (2013). Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine. Applied Energy, 106, 184-97. https://doi.org/10.1016/j.apenergy.2013.01.058

Li, Y., Jia, M., Chang, Y., Xie, M., & Reitz, R. D. (2016). Towards a comprehensive understanding of the influence of fuel properties on the combustion characteristics of a RCCI (reactivity controlled compression ignition) engine. Energy, 99, 69-82. https://doi.org/10.1016/j.energy.2016.01.056

Liu, H., Wang, X., Zheng, Z., Gu, J., Wang, H., & Yao, M. (2014). Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine. Energy. https://doi.org/10.1016/j.energy.2014.07.041

Murtonen, T., Aakko-Saksa, P., Kuronen, M., Mikkonen, S., & Lehtoranta, K. (2009). Emissions with heavy-duty diesel engines and vehicles using FAME, HVO and GTL fuels with and without DOC + POC aftertreatment. SAE paper 2009-01-2693, 2009. https://doi.org/10.4271/2009-01-2693

Neste Certificate of Analysis. (2017). No. TT-17-001095. Date of issue: 2017.03.31. Neste Corporation, Technology Centre, Engine Laboratory, P.O. Box 310, 06101 Porvoo, Finland.

Neste PRO Diesel Product Data Sheet. (2017). Abbreviation: DIP-12/-22. Date of issue: 2017.01.01. Neste Oyj, Neste Retail POB 95 FIN-00095 Neste Oyj, Finland.

Pflaum, H., Hofmann, P., Geringer, B., & Weissel, W. (2010). Potential of hydrogenated vegetable oil (HVO) in a modern diesel engine. SAE paper 2010-32-0081, 2010. https://doi.org/10.4271/2010-32-0081

Pirjola, L., Rönkkö, T., Saukko, E., Parviainen, H., Malinen, A., Alanen, J., Saveljeff, H. (2017). Exhaust emissions of non-road mobile machine: real-world and laboratory studies with diesel and HVO fuels. Fuel, 202(15 August 2017), 154-164. https://doi.org/10.1016/j.fuel.2017.04.029

Raslavičius, L., Keršys, A., Starevičius, M., Sapragonas, J., & Bazaras, Ž. (2014). Biofuels, sustainability and the transport sector in Lithuania. Renewable and Sustainable Energy Reviews, 32, 328-346. https://doi.org/10.1016/j.rser.2014.01.019

Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. https://doi.org/10.1016/j.pecs.2014.05.003

Rocha, H. M. Z., Pereira, R. S., Nogueira, M. F. N., Belchior, C. R. P., & Tostes, M. E. L. (2016). Experimental investigation of hydrogen addition in the intake air of compressed ignition engines running on biodiesel blend. International Journal of Hydrogen Energy, 12, 1-10.

Saravanan, N., Nagarajan, G., & Narayanasamy, S. (2007). Experimental investigation on performance and emission characteristics of DI diesel engine with hydrogen fuel. SAE Technique Paper 2007-01-17. https://doi.org/10.4271/2007-26-030

Schroeder, V., & Holtappels, K. (2004). Explosion characteristics of hydrogen-air and hydrogen-oxygen mixtures at elevated pressures. Bundesanstal für Materialforschung und Pruefung (BAM) Research report – Project SAFEKINEX, contract EVG1-CT-2002-00072.

Schroeder, V., Emonts, B., Janssen, H., & Schulze, H.-P. (2004). Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar. Chemical Engineering Technology, 27(8), 847-851. https://doi.org/10.1002/ceat200403174

Senthil Kumar, M. (2003). Use of hydrogen to enhance the performance of a vegetable oil fueled compression ignition engine. International Journal of Hydrogen Energy, 28(10), 11, 43-54.

Singh Bika, A., Franklin, L. M., Kittelson, D. B. (2008). Emissions effects of hydrogen as a supplemental fuel with diesel and biodiesel. SAE Paper 2008-01-0648.

Singh, D., Subramanian, K. A., Singal, S. K. (2015). Emissions and fuel consumption characteristics of a heavy duty diesel engine fueled with Hydro processed Renewable Diesel and Biodiesel. Applied Energy, 155(2015), 440-446.

Sotelo-Boyás, R., Trejo-Zárraga, F., & de Jesús Hernández-Loyo, F. (2012). Hydroconversion of triglycerides into green liquid fuels. Chapter 8. Hydrogeneration edited by Iyad Karamé (pp. 187-216). IntechOpen. ISBN 978-953-51-0785-9.

Sugiyama, K., Goto, I., Kitano, K., Mogi, K., et al. (2012). Effects of Hydrotreated Vegetable Oil (HVO) as renewable diesel fuel on combustion and exhaust emissions in diesel engine. SAE International Journal of Fuels and Lubricants, 5(1), 205-217. https://doi.org/10.4271/2011-01-1954

Szwaja, S., & Grab-Rogalinski, K. (2009). Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy, 34, 4413-4421. https://doi.org/10.1016/j.ijhydene.2009.03.020

Szwaja, S. (2011). Knock and combustion rate interaction in a hydrogen fuelled combustion engine. Journal of KONES Powertrain and Transport, 18(3) 431-438.

Tang, Ch., Zhang, Y., & Huang, Z. (2014). Progress in combustion investigations of hydrogen enriched hydrocarbons. Renewable and Sustainable Energy Reviews, 30, 195-216. https://doi.org/10.1016/j.rser.2013.10.005

Verhelst, S., & Wallner, T. (2009). Hydrogen-fueled internal combustion engines. Science Direct: Progress in Energy and Combustion Science, 35, 490-527. https://doi.org/10.1016/j.pecs.2009.08.001

Zhou, J. H., Cheung, C. S., & Leung, C. W. (2014). Combustion, performance, regulated and unregulated emissions of a die-sel engine with hydrogen addition. Applied Energy, 126, 1-12. https://doi.org/10.1016/j.apenergy.2014.03.089