Share:


Performance evaluation of sustainable energy alternatives to obtain efficient hybrid energy investments

    Hasan Dinçer Affiliation
    ; Serhat Yüksel Affiliation
    ; Ümit Hacioğlu Affiliation
    ; Ştefan Cristian Gherghina Affiliation

Abstract

This study evaluates the synergy of coalition for hybrid renewable energy (RWB) system alternatives. In this context, the alternative sources of hybrid RWB system are examined to illustrate the impact-relation directions among them with multi SWARA based on q-ROFs and golden cut. Next, the performances of renewable alternatives are measured in terms of the synergy of coalition with game theory and Shapley value. It is concluded that solar energy is the most suitable RWB alternative for synergy to increase efficiency in investments. However, biomass does not have a significant influence on providing synergy in energy investments. Therefore, solar energy should be prioritized for hybrid energy investments. Especially with the effect of technological developments, the efficiency of solar energy investments increases significantly. Thus, solar energy investments have become quite suitable for increasing the synergy in hybrid energy projects. Furthermore, necessary research should be conducted to make biomass energy more efficient.

Keyword : hybrid energy, renewable energy, energy investments, SWARA, q-ROFs, Shapley value

How to Cite
Dinçer, H., Yüksel, S., Hacioğlu, Ümit, & Gherghina, Ştefan C. (2024). Performance evaluation of sustainable energy alternatives to obtain efficient hybrid energy investments. Technological and Economic Development of Economy, 30(5), 1533–1552. https://doi.org/10.3846/tede.2024.21462
Published in Issue
Sep 24, 2024
Abstract Views
286
PDF Downloads
269
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abba, Z. Y. I., Balta-Ozkan, N., & Hart, P. (2022). A holistic risk management framework for renewable energy investments. Renewable and Sustainable Energy Reviews, 160, Article 112305. https://doi.org/10.1016/j.rser.2022.112305

Adefarati, T., Bansal, R. C., Shongwe, T., Naidoo, R., Bettayeb, M., & Onaolapo, A. K. (2023). Optimal energy management, technical, economic, social, political and environmental benefit analysis of a grid-connected PV/WT/FC hybrid energy system. Energy Conversion and Management, 292, Article 117390. https://doi.org/10.1016/j.enconman.2023.117390

Akarsu, B., & Genç, M. S. (2022). Optimization of electricity and hydrogen production with hybrid renewable energy systems. Fuel, 324, Article 124465. https://doi.org/10.1016/j.fuel.2022.124465

Alhasnawi, B. N., Jasim, B. H., Sedhom, B. E., & Guerrero, J. M. (2021). consensus algorithm-based coalition game theory for demand management scheme in smart microgrid. Sustainable Cities and Society, 74, Article 103248. https://doi.org/10.1016/j.scs.2021.103248

Ali, F., Ahmar, M., Jiang, Y., & AlAhmad, M. (2021). A techno-economic assessment of hybrid energy systems in rural Pakistan. Energy, 215, Article 119103. https://doi.org/10.1016/j.energy.2020.119103

Al-Khayyat, A. S., Hameed, M. J., & Ridha, A. A. (2023). Optimized power flow control for PV with hybrid energy storage system HESS in low voltage DC microgrid. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 6, Article 100388. https://doi.org/10.1016/j.prime.2023.100388

Aloini, D., Dulmin, R., Mininno, V., Raugi, M., Schito, E., Testi, D., Tucci, M., & Zerbino, P. (2021). A multi-objective methodology for evaluating the investment in building-integrated hybrid renewable energy systems. Journal of Cleaner Production, 329, Article 129780. https://doi.org/10.1016/j.jclepro.2021.129780

Arent, D. J., Bragg-Sitton, S. M., Miller, D. C., Tarka, T. J., Engel-Cox, J. A., Boardman, R. D., Balash, P. C., Ruth, M. F., Cox, J., & Garfield, D. J. (2021). Multi-input, multi-output hybrid energy systems. Joule, 5(1), 47–58. https://doi.org/10.1016/j.joule.2020.11.004

Alonso, A. M., Costa, D., Messagie, M., & Coosemans, T. (2023). Techno-economic assessment on hybrid energy storage systems comprising hydrogen and batteries: A case study in Belgium. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.06.282

Atanassov, K. T. (1983, June 1). Intuitionistic fuzzy sets. In VII ITKR’s Session. Sofia. https://doi.org/10.1007/978-3-7908-1870-3_1

Babatunde, O. M., Munda, J. L., & Hamam, Y. (2022). Hybridized off-grid fuel cell/wind/solar PV /battery for energy generation in a small household: A multi-criteria perspective. International Journal of Hydrogen Energy, 47(10), 6437–6452. https://doi.org/10.1016/j.ijhydene.2021.12.018

Barelli, L., Bidini, G., Ciupageanu, D. A., & Pelosi, D. (2021). Integrating hybrid energy storage system on a wind generator to enhance grid safety and stability: A levelized cost of electricity analysis. Journal of Energy Storage, 34, Article 10205. https://doi.org/10.1016/j.est.2020.102050

Bhattacharjee, S., & Nandi, C. (2021). Design of a voting based smart energy management system of the renewable energy based hybrid energy system for a small community. Energy, 214, Article 118977. https://doi.org/10.1016/j.energy.2020.118977

Bhuiyan, M. A., Dinçer, H., Yüksel, S., Mikhaylov, A., Danish, M. S. S., Pinter, G., Uyeh, D. D., & Stepanova, D. (2022). Economic indicators and bioenergy supply in developed economies: QROF-DEMATEL and random forest models. Energy Reports, 8, 561–570. https://doi.org/10.1016/j.egyr.2021.11.278

Bulut, M., & Özcan, E. (2021). A new approach to determine maintenance periods of the most critical hydroelectric power plant equipment. Reliability Engineering & System Safety, 205, Article 107238. https://doi.org/10.1016/j.ress.2020.107238

Castro, M. T., Pascasio, J. D. A., Delina, L. L., Balite, P. H. M., & Ocon, J. D. (2022). Techno-economic and financial analyses of hybrid renewable energy system microgrids in 634 Philippine off-grid islands: Policy implications on public subsidies and private investments. Energy, 257, Article 124599. https://doi.org/10.1016/j.energy.2022.124599

Chen, Y., & Zhang, S. (2024). Technical, economic, and environmental assessment of a stand-alone power system based on diesel engine with/without energy storage using an optimization algorithm: A case study in China. Environmental Science and Pollution Research, 31, 38585–38602. https://doi.org/10.1007/s11356-023-31488-3

Doile, G. N. D. d., Junior, P., Rocha, L. C., Janda, K., Aquila, G., Peruchi, R. S., & Balestrassi, P. P. (2022). Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation. Renewable Energy, 195, 1310–1323. https://doi.org/10.1016/j.renene.2022.06.121

Dong, H., Shan, Z., Zhou, J., Xu, C., & Chen, W. (2023). Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage. Applied Energy, 351, Article 121834. https://doi.org/10.1016/j.apenergy.2023.121834

Dong, W., Zhao, G., Yüksel, S., Dinçer, H., & Ubay, G. G. (2022a). A novel hybrid decision making approach for the strategic selection of wind energy projects. Renewable Energy, 185, 321–337. https://doi.org/10.1016/j.renene.2021.12.077

Dong, Y., Liu, F., Lu, X., Lou, Y., Ma, Y., & Eghbalian, N. (2022b). Multi-objective economic environmental energy management microgrid using hybrid energy storage implementing and developed Manta Ray Foraging Optimization Algorithm. Electric Power Systems Research, 211, Article 108181. https://doi.org/10.1016/j.epsr.2022.108181

El Mezdi, K., El Magri, A., El Myasse, I., Watil, A., Bahatti, L., Elaadouli, N., & Ouabi, H. (2023). Performance improvement through nonlinear control design and power management of a grid-connected wind-battery hybrid energy storage system. Results in Engineering, 20, Article 101491. https://doi.org/10.1016/j.rineng.2023.101491

Garcia, A. V. M., Sánchez-Romero, F. J., López-Jiménez, P. A., & Pérez-Sánchez, M. (2022). A new optimization approach for the use of hybrid renewable systems in the search of the zero net energy consumption in water irrigation systems. Renewable Energy, 195, 853–871. https://doi.org/10.1016/j.renene.2022.06.060

Guo, F., Gao, J., Liu, H., & He, P. (2022). A hybrid fuzzy investment assessment framework for offshore wind-photovoltaic-hydrogen storage project. Journal of Energy Storage, 45, Article 103757. https://doi.org/10.1016/j.est.2021.103757

Guo, J., Zhang, P., Wu, D., Liu, Z., Ge, H., Zhang, S., & Yang, X. (2021). A new collaborative optimization method for a distributed energy system combining hybrid energy storage. Sustainable Cities and Society, 75, Article 10333. https://doi.org/10.1016/j.scs.2021.103330

Gupta, S., Rajhans, C., Duttagupta, S. P., & Mitra, M. (2021). Hybrid energy design for lighter than air systems. Renewable Energy, 173, 781–794. https://doi.org/10.1016/j.renene.2021.04.030

Güven, A. F., & Mengi, O. Ö. (2023). Assessing metaheuristic algorithms in determining dimensions of hybrid energy systems for isolated rural environments: Exploring renewable energy systems with hydrogen storage features. Journal of Cleaner Production, 428, Aarticle 139339. https://doi.org/10.1016/j.jclepro.2023.139339

He, J., Shi, C., Wei, T., Peng, X., & Guan, Y. (2021). Hierarchical optimal energy management strategy of hybrid energy storage considering uncertainty for a 100% clean energy town. Journal of Energy Storage, 41, Article 102917. https://doi.org/10.1016/j.est.2021.102917

He, Y., Guo, S., Zhou, J., Song, G., Aynur Kurban, & Wang, H. (2022). The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system. Energy, 245, Article 123248. https://doi.org/10.1016/j.energy.2022.123248

Hills, S., Dana, S., & Wang, H. (2021). Dynamic modeling and simulation of nuclear hybrid energy systems using freeze desalination and reverse osmosis for clean water production. Energy Conversion and Management, 247, Article 114724. https://doi.org/10.1016/j.enconman.2021.114724

Ho, A., Mohammadi, K., Memmott, M., Hedengren, J., & Powell, K. M. (2021). Dynamic simulation of a novel nuclear hybrid energy system with large-scale hydrogen storage in an underground salt cavern. International Journal of Hydrogen Energy, 46(61), 31143–31157. https://doi.org/10.1016/j.ijhydene.2021.07.027

Hoseinzadeh, S., & Garcia, D. A. (2022). Techno-economic assessment of hybrid energy flexibility systems for islands’ decarbonization: A case study in Italy. Sustainable Energy Technologies and Assessments, 51, Article 101929. https://doi.org/10.1016/j.seta.2021.101929

Huang, M., He, W., Incecik, A., Cichon, A., Królczyk, G., & Li, Z. (2021). Renewable energy storage and sustainable design of hybrid energy powered ships: A case study. Journal of Energy Storage, 43, Article 103266. https://doi.org/10.1016/j.est.2021.103266

Jahangir, M. H., Montazeri, M., Mousavi, S. A., & Kargarzadeh, A. (2022). Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems. Renewable Energy, 189, 52–65. https://doi.org/10.1016/j.renene.2022.02.022

Kallio, S., & Siroux, M. (2022). Exergy and exergo-economic analysis of a hybrid renewable energy system under different climate conditions. Renewable Energy, 194, 396–414. https://doi.org/10.1016/j.renene.2022.05.115

Kamel, A. A., Rezk, H., & Abdelkareem, M. A. (2021). Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy. International Journal of Hydrogen Energy, 46(8), 6061–6075. https://doi.org/10.1016/j.ijhydene.2020.06.052

Karaaslan, A., & Gezen, M. (2022). The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient. Renewable Energy, 182, 842–854. https://doi.org/10.1016/j.renene.2021.10.053

Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12

Khosravi, M., Afsharnia, S., & Farhangi, S. (2021). Optimal sizing and technology selection of hybrid energy storage system with novel dispatching power for wind power integration. International Journal of Electrical Power & Energy Systems, 127, Article 10666. https://doi.org/10.1016/j.ijepes.2020.106660

Kirim, Y., Sadikoglu, H., & Melikoglu, M. (2022). Technical and economic analysis of biogas and solar photovoltaic (PV) hybrid renewable energy system for dairy cattle barns. Renewable Energy, 188, 873–889. https://doi.org/10.1016/j.renene.2022.02.082

Kumar, R. P., & Karthikeyan, G. (2024). A multi-objective optimization solution for distributed generation energy management in microgrids with hybrid energy sources and battery storage system. Journal of Energy Storage, 75, Article 109702. https://doi.org/10.1016/j.est.2023.109702

Kumar, S., Gupta, A., & Bindal, R. K. (2023). Power quality investigation of a grid tied hybrid energy system using a D-STATCOM control and grasshopper optimization technique. Results in Control and Optimization, 14, Article 100368. https://doi.org/10.1016/j.rico.2023.100368

Lee, H., Lee, J., & Koo, Y. (2022). Economic impacts of carbon capture and storage on the steel industry–A hybrid energy system model incorporating technological change. Applied Energy, 317, Article 119208. https://doi.org/10.1016/j.apenergy.2022.119208

Li, J., Shi, L., & Fu, H. (2024). Multi-objective short-term optimal dispatching of cascade hydro–wind–solar–thermal hybrid generation system with pumped storage hydropower. Energies, 17(1), Article 98. https://doi.org/10.3390/en17010098

Li, Y. X., Wu, Z. X., Dinçer, H., Kalkavan, H., & Yüksel, S. (2021). Analyzing TRIZ-based strategic priorities of customer expectations for renewable energy investments with interval type-2 fuzzy modeling. Energy Reports, 7, 95–108. https://doi.org/10.1016/j.egyr.2020.11.167

Liu, Z., Guo, J., Li, Y., Wu, D., Zhang, S., Yang, X., Ge, H., & Cai, Z. (2021). Multi-scenario analysis and collaborative optimization of a novel distributed energy system coupled with hybrid energy storage for a nearly zero-energy community. Journal of Energy Storage, 41, Article 102992. https://doi.org/10.1016/j.est.2021.102992

Livio, M. (2008). The golden ratio: The story of phi, the world’s most astonishing number. Crown.

Majumder, P., Bhowmik, P., Das, A., Senapati, T., Simic, V., & Pamucar, D. (2023). An intuitionistic fuzzy based hybrid decision-making approach to determine the priority value of indicators and its application to solar energy feasibility analysis. Optik, 295, Article 171492. https://doi.org/10.1016/j.ijleo.2023.171492

Manirathinam, T., Narayanamoorthy, S., Geetha, S., Othman, M. F. I., Alotaibi, B. S., Ahmadian, A., & Kang, D. (2023). Sustainable renewable energy system selection for self-sufficient households using integrated fermatean neutrosophic fuzzy stratified AHP-MARCOS approach. Renewable Energy, 218, Article 119292. https://doi.org/10.1016/j.renene.2023.119292

Mathesh, G., & Saravanakumar, R. (2023). A novel intelligent controller-based power management system with instantaneous reference current in hybrid energy-fed electric vehicle. IEEE Access, 11, 137849–137865. https://doi.org/10.1109/ACCESS.2023.3339249

Miao, L., Lv, Y., Zhu, D., Li, L., Gan, L., & Liu, M. (2023). Recent advances in zinc-ion hybrid energy storage: Coloring high-power capacitors with battery-level energy. Chinese Chemical Letters, 34(7), Article 107784. https://doi.org/10.1016/j.cclet.2022.107784

Nguyen, N. T., Matsuhashi, R., & Vo, T. T. B. C. (2021). A design on sustainable hybrid energy systems by multi-objective optimization for aquaculture industry. Renewable Energy, 163, 1878–1894. https://doi.org/10.1016/j.renene.2020.10.024

Niaz, H., Zarei, M., Shams, M. H., Won, W., & Liu, J. J. (2024). Curtailment to cashflow: Exploring BESS and hydrogen for renewable energy profitability. Journal of Energy Storage, 77, Article 109990. https://doi.org/10.1016/j.est.2023.109990

Nkwanyana, T. B., Siti, M. W., Wang, Z., Toudjeu, I., Mbungu, N. T., & Mulumba, W. (2023). An assessment of hybrid-energy storage systems in the renewable environments. Journal of Energy Storage, 72, Article 108307. https://doi.org/10.1016/j.est.2023.108307

Pang, Y., Cao, Y., Derakhshani, M., Fang, Y., Wang, Z. L., & Cao, C. (2021). Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter, 4(1), 116–143. https://doi.org/10.1016/j.matt.2020.10.018

Pascasio, J. D. A., Esparcia Jr, E. A., Castro, M. T., & Ocon, J. D. (2021). Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands. Renewable Energy, 179, 1589–1607. https://doi.org/10.1016/j.renene.2021.07.093

Peirow, S., Razi Astaraei, F., & Saifoddin Asl, A. (2023). Techno-economic and environmental assessment of a hybrid renewable energy system for a hospital using multi-criteria decision-making method. Energies, 16(4), Article 1916. https://doi.org/10.3390/en16041916

Peppas, A., Kollias, K., Politis, A., Karalis, L., Taxiarchou, M., & Paspaliaris, I. (2021). Performance evaluation and life cycle analysis of RES-hydrogen hybrid energy system for office building. International Journal of Hydrogen Energy, 46(9), 6286–6298. https://doi.org/10.1016/j.ijhydene.2020.11.173

Prakasam, M. M. A., Karuppaiyen, M., & Siddan, G. (2023). A photovoltaic (PV)-wind hybrid energy system using an improved deep neural network (IDNN)-based voltage source controller for a microgrid environment. Engineering Proceedings, 59(1), Article 30. https://doi.org/10.3390/engproc2023059030

Qi, N., Yin, Y., Dai, K., Wu, C., Wang, X., & You, Z. (2021). Comprehensive optimized hybrid energy storage system for long-life solar-powered wireless sensor network nodes. Applied Energy, 290, Article 11678. https://doi.org/10.1016/j.apenergy.2021.116780

Qiu, Y., Li, Q., Ai, Y., Chen, W., Benbouzid, M., Liu, S., & Gao, F. (2023). Two-stage distributionally robust optimization-based coordinated scheduling of integrated energy system with electricity-hydrogen hybrid energy storage. Protection and Control of Modern Power Systems, 8(1), Article 33. https://doi.org/10.1186/s41601-023-00308-8

Ren, F., Lin, X., Wei, Z., Zhai, X., & Yang, J. (2022). A novel planning method for design and dispatch of hybrid energy systems. Applied Energy, 321, Article 119335. https://doi.org/10.1016/j.apenergy.2022.119335

Reveles-Miranda, M., Ramirez-Rivera, V., & Pacheco-Catalán, D. (2024). Hybrid energy storage: Features, applications, and ancillary benefits. Renewable and Sustainable Energy Reviews, 192, Article 114196. https://doi.org/10.1016/j.rser.2023.114196

Rezk, H., Mukhametzyanov, I. Z., Abdelkareem, M. A., Salameh, T., Sayed, E. T., Maghrabie, H. M., Radwand, A., Wilberforce, T., Elsaid, K., & Olabi, A. G. (2022). Multi-criteria decision making for different concentrated solar thermal power technologies. Sustainable Energy Technologies and Assessments, 52, Article 102118. https://doi.org/10.1016/j.seta.2022.102118

Ross, M., & Bindra, H. (2021). Estimating energy storage size for Nuclear-Renewable hybrid energy systems using data-driven stochastic emulators. Journal of Energy Storage, 40, Article 102787. https://doi.org/10.1016/j.est.2021.102787

Smith, M., & Alvarez, F. (2021). Identifying mortality factors from Machine Learning using Shapley values – a case of COVID-19. Expert Systems with Applications, 176, Article 114832. https://doi.org/10.1016/j.eswa.2021.114832

Song, Y., Mu, H., Li, N., Shi, X., Zhao, X., Chen, C., & Wang, H. (2022). Techno-economic analysis of a hybrid energy system for CCHP and hydrogen production based on solar energy. International Journal of Hydrogen Energy, 47(58), 24533–24547. https://doi.org/10.1016/j.ijhydene.2021.08.134

Soyturk, G., Kizilkan, O., Ezan, M. A., & Colpan, C. O. (2024). Design, modeling, and analysis of a PV/T and PEM fuel cell based hybrid energy system for an off-grid house. International Journal of Hydrogen Energy, 67, 1181–1193. https://doi.org/10.1016/j.ijhydene.2023.11.291

Turkdogan, S. (2021). Design and optimization of a solely renewable based hybrid energy system for residential electrical load and fuel cell electric vehicle. Engineering Science and Technology, an International Journal, 24(2), 397–404. https://doi.org/10.1016/j.jestch.2020.08.017

Wang, K., Ouyang, H., Zhou, J., Chang, Y., Xu, D., & Zhao, H. (2021). A nonlinear hybrid energy harvester with high ultralow-frequency energy harvesting performance. Meccanica, 56(2), 461–480. https://doi.org/10.1007/s11012-020-01291-2

Wilberforce, T., Anser, A., Swamy, J. A., & Opoku, R. (2023). An investigation into hybrid energy storage system control and power distribution for hybrid electric vehicles. Energy, 279, Article 127804. https://doi.org/10.1016/j.energy.2023.127804

Yager, R. R. (2013, June). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS) (pp. 57–61). IEEE. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

Yager, R. R. (2016). Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005

Yazdani, H., Baneshi, M., & Yaghoubi, M. (2023). Techno-economic and environmental design of hybrid energy systems using multi-objective optimization and multi-criteria decision making methods. Energy Conversion and Management, 282, Article 116873. https://doi.org/10.1016/j.enconman.2023.116873

Zhang, L., Chai, J., Xin, H., & Zhao, Z. (2021). Evaluating the comprehensive benefit of hybrid energy system for ecological civilization construction in China. Journal of Cleaner Production, 278, Article 123769. https://doi.org/10.1016/j.jclepro.2020.123769

Zhang, Z., Cheng, X., Xing, Z., & Wang, Z. (2024). Energy management strategy optimization for hybrid energy storage system of tram based on competitive particle swarm algorithms. Journal of Energy Storage, 75, Article 109698. https://doi.org/10.1016/j.est.2023.109698