Share:


Carbon dioxide emission from diesel engine vehicles in intermodal transport

Abstract

Currently, many logistics operators operate in both domestic and foreign markets using various forms of transport organization. Choosing a corresponding technology and appropriate form of transport has an influence not only delivery time and costs, but also has an impact on the environment as a whole. There is a plethora of public research available in global literature discussing various ways of exploiting transport. On the other hand, there is a lack of complex studies detailing carbon emissions coming from transport activity. Specifically, where a theory of organic fuel combustion in the form of a chemical reaction with oxygen is considered. To fill this gap, we offer an innovative Emission Model of Industrial Sources (EMIS) method. This method makes it possible to determine the amount of CO2 emitted into the atmosphere during various transport methods. It also enables us to estimate, in terms of CO2 output, a threshold where transport of containers via combined mode becomes more favourable for the environment, than road transport. We ran a simulation of our algorithm to create boundary conditions. This let us prepare a regression function of CO2 emission, for intermodal and road transport as a function of various transport distances. The simulation results suggest that our approach may be used by supervisory institutions, which are responsible further developing and utilizing combined transport.

Keyword : intermodal transport, carbon dioxide, environment, sustainable transport, transport emissions

How to Cite
Brzeziński, M., & Pyza, D. (2021). Carbon dioxide emission from diesel engine vehicles in intermodal transport. Transport, 36(3), 246-259. https://doi.org/10.3846/transport.2021.15484
Published in Issue
Sep 14, 2021
Abstract Views
779
PDF Downloads
618
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ambroziak, T.; Gołębiowski, P.; Pyza, D.; Jacyna-Gołda, I.; Merkisz-Guranowska, A. 2013. Identification and analysis of parameters for the areas of the highest harmful exhaust emissions in the model emitransys, Journal of KONES Powertrain and Transport 20(3): 9–20.

Ambroziak, T.; Pyza, D.; Merkisz-Guranowska, A.; Jachimowski, R. 2014. Ocena wpływu transportu drogowego na degradację środowiska przy różnej strukturze pojazdów. Wydawnicza Politechniki Warszawskiej. 121. (in Polish).

Arnold, P.; Peeters, D.; Thomas, I. 2004. Modelling a rail/road intermodal transportation system, Transportation Research Part E: Logistics and Transportation Review 40(3): 255–270. https://doi.org/10.1016/j.tre.2003.08.005

Belmecheri, F.; Cagniart, T.; Amodeo, L.; Yalaoui F.; Prins, C. 2009. Modelling and optimization of empty container reuse: a real case study, in 2009 International Conference on Computers & Industrial Engineering, 6–9 July 2009, Troyes, France, 1106–1109. https://doi.org/10.1109/iccie.2009.5223777

Boile, M. P. 2006. Empty Intermodal Container Management. Report No FHWA-NJ-2006-005. Center for Advanced Infrastructure and Transportation (CAIT), The State University of New Jersey, US. 130 p. Available from Internet: https://cait.rutgers.edu/wp-content/uploads/2018/05/fhwa-nj-2006-005.pdf

Boysen, N.; Fliedner, M., 2010. Determining crane areas in intermodal transshipment yards: The yard partition problem, European Journal of Operational Research 204(2): 336–342. https://doi.org/10.1016/j.ejor.2009.10.031

Braekers, K.; Janssens, G. K.; Caris, A. 2009. Review on the comparison of external costs of intermodal transport and unimodal road transport, in Proceedings of the BIVEC-GIBET Transport Research Day 2009, 27 May 2009, Brussels, Belgium, 875–890.

Brzeziński, M.; Pyza, D. 2020. Designing of transshipment terminals for selected intermodal transport systems, Advances in Intelligent Systems and Computing 1032: 52–62. https://doi.org/10.1007/978-3-030-27687-4_6

Cordeau, J.-F.; Legato, P.; Mazza, R. M.; Trunfio, R. 2015. Simulation-based optimization for housekeeping in a container transshipment terminal, Computers & Operations Research 53: 81–95. https://doi.org/10.1016/j.cor.2014.08.001

Craig, A. J.; Blanco, E. E.; Sheffi, Y. 2013. Estimating the CO2 intensity of intermodal freight transportation, Transportation Research Part D: Transport and Environment 22: 49–53. https://doi.org/10.1016/j.trd.2013.02.016

Dimoula, V.; Kehagia, F.; Tsakalidis, A. 2016. A holistic approach for estimating carbon emissions of road and rail transport systems, Aerosol and Atmospheric Chemistry 16(1): 61–68. https://doi.org/10.4209/aaqr.2015.05.0313

EC. 1992. Council Directive 92/106/EEC of 7 December 1992 on the Establishment of Common Rules for Certain Types of Combined Transport of Goods between Member States. European Communities (EC). 5 p. Available from Internet: http://data.europa.eu/eli/dir/1992/106/oj

EC. 2015. Report from the Commission to the European Parliament and the Council on the Implementation of Regulation (EU) No 70/2012 of the European Parliament and of the Council of 18 January 2012 on Statistical Returns in Respect of the Carriage of Goods by Road. European Communities (EC). 11 p. Available from Internet: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0017

Fan, Y.; Behdani, B.; Bloemhof-Ruwaard, J.; Zuidwijk, R. 2019. Flow consolidation in hinterland container transport: An analysis for perishable and dry cargo, Transportation Research Part E: Logistics and Transportation Review 130: 128–160. https://doi.org/10.1016/j.tre.2019.08.011

Fedtke, S.; Boysen, N. 2017. A comparison of different container sorting systems in modern rail-rail transshipment yards, Transportation Research Part C: Emerging Technologies 82: 63–87. https://doi.org/10.1016/j.trc.2017.06.012

Flodén, J.; Woxenius, J. 2017. Agility in the Swedish intermodal freight market – the effects of the withdrawal of the main provider, Research in Transportation Business & Management 23: 21–34. https://doi.org/10.1016/j.rtbm.2017.02.010

Furió, S.; Andrés, C.; Adenso-Díaz, B.; Lozano, S. 2013. Optimization of empty container movements using street-turn: application to Valencia hinterland, Computers & Industrial Engineering 66(4): 909–917. https://doi.org/10.1016/j.cie.2013.09.003

García-Álvarez, A.; Pérez-Martínez, P. J.; I. González-Franco, I. 2013. Energy consumption and carbon dioxide emissions in rail and road freight transport in Spain: a case study of car carriers and bulk petrochemicals, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 17(3): 233–244. https://doi.org/10.1080/15472450.2012.719456

Grzelakowski, A. S. 2012. Rozwój transportu intermodalnego w Polsce. Podstawowe uwarunkowania i wyzwania, Logistyka 5: 425–432. (in Polish).

Guo, P.; Cheng, W.; Wang, Y.; Boysen, N. 2018. Gantry crane scheduling in intermodal rail-road container terminals, International Journal of Production Research 56(16): 5419–5436. https://doi.org/10.1080/00207543.2018.1444812

Heggen, H.; Molenbruch, Y.; Caris, A.; Braekers, K. 2019. Intermodal container routing: integrating long-haul routing and local drayage decisions, Sustainability 11(6): 1634. https://doi.org/10.3390/su11061634

Heinold, A.; Meisel, F. 2018. Emission rates of intermodal rail/road and road-only transportation in Europe: a comprehensive simulation study, Transportation Research Part D: Transport and Environment 65: 421–437. https://doi.org/10.1016/j.trd.2018.09.003

Hjortnaes, T.; Wiegmans, B.; Negenborn, R. R.; Zuidwijk, R. A.; Klijnhout, R. 2017. Minimizing cost of empty container repositioning in port hinterlands, while taking repair operations into account, Journal of Transport Geography 58: 209–219. https://doi.org/10.1016/j.jtrangeo.2016.12.015

Jacyna, M.; Pyza, D.; Jachimowski, R. 2017. Transport intermodalny: projektowanie terminali przeładunkowych. Wydawnictwo Naukowe PWN. 282 s. (in Polish).

Jula, H.; Chassiakos, A.; Ioannou, P. 2006. Port dynamic empty container reuse, Transportation Research Part E: Logistics and Transportation Review 42(1): 43–60. https://doi.org/10.1016/j.tre.2004.08.007

Kreutzberger, E.; Macharis, C.; Woxenius, J. 2006. Intermodal versus unimodal road freight transport: a review of comparisons of the external costs, in B. Jourquin, P. Rietveld, K. Westin (Eds.). Towards better Performing Transport Networks, 17–42.

Lebedevas, S.; Dailydka, S.; Jastremskas, V.; Rapalis, P. 2017. Research of energy efficiency and reduction of environmental pollution in freight rail transportation, Transport 32(3): 291–301. https://doi.org/10.3846/16484142.2016.1230888

Li, L.; Negenborn, R. R.; De Schutter, B. 2013. A general framework for modeling intermodal transport networks, in 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC), 10–12 April 2013, Evry, France, 579–585. https://doi.org/10.1109/ICNSC.2013.6548803

Li, L.; Wang, B.; Cook, D. P. 2014. Enhancing green supply chain initiatives via empty container reuse, Transportation Research Part E: Logistics and Transportation Review 70: 190–204. https://doi.org/10.1016/j.tre.2014.06.018

Limbourg, S., Jourquin, B. 2009. Optimal rail-road container terminal locations on the European network, Transportation Research Part E: Logistics and Transportation Review 45(4): 551–563. https://doi.org/10.1016/j.tre.2008.12.003

Lin, C.-C.; Chiang, Y.-I.; Lin, S.-W. 2014. Efficient model and heuristic for the intermodal terminal location problem, Computers & Operations Research 51: 41–51. https://doi.org/10.1016/j.cor.2014.05.004

López-Navarro, M. Á. 2014. Environmental factors and intermodal freight transportation: analysis of the decision bases in the case of Spanish motorways of the sea, Sustainability 6(3): 1544–1566. https://doi.org/10.3390/su6031544

MTBGM. 2013. Strategia rozwoju transportu do 2020 roku (z perspektywą do 2030 roku). Ministerstwo transportu, budownictwa i gospodarki morskiej (MTBGM), Warszawa, Polska, 100 s. Available from Internet: https://www.gov.pl/documents/905843/1047987/Strategia_Rozwoju_Transportu_do_2020_roku.pdf (in Polish).

Monios, J.; Bergqvist, R. 2017. Identifying competitive strategies for each phase of the intermodal terminal life cycle, Research in Transportation Business & Management 23: 97–105. https://doi.org/10.1016/j.rtbm.2017.02.007

Pyza, D. 2019. Systemy przewozowe – problemy obsługi, potencjał i jego utrzymanie. Wydawnicza Politechniki Warszawskiej. 212 s. (in Polish).

Rajkovic, R.; Zrnic, N.; Bojic, S.; Stakic, Đ. 2016. Role of cargo weight and volume: minimizing costs and CO2 emissions in container transport, in Commercial Transport: Proceedings of the 2nd Interdisciplinary Conference on Production, Logistics and Traffic 2015, 21–22 July 2015, Dortmund, Germany, 159–173. https://doi.org/10.1007/978-3-319-21266-1_10

Ritchie, H.; Roser, M. 2017. CO2 and Greenhouse Gas Emissions. Available from Internet: https://ourworldindata.org/co2-andother-greenhouse-gas-emissions

Saeedi, H.; Wiegmans, B.; Behdani, B.; Zuidwijk, R. 2017. Analyzing competition in intermodal freight transport networks: the market implication of business consolidation strategies, Research in Transportation Business & Management 23: 12–20. https://doi.org/10.1016/j.rtbm.2017.02.009

Santos, B. F.; Limbourg, S.; Carreira, J. S. 2015. The impact of transport policies on railroad intermodal freight competitiveness – the case of Belgium, Transportation Research Part D: Transport and Environment 34: 230–244. https://doi.org/10.1016/j.trd.2014.10.015

Southworth, F.; Peterson, B. E. 2000. Intermodal and international freight network modeling, Transportation Research Part C: Emerging Technologies 8(1–6): 147–166. https://doi.org/10.1016/S0968-090X(00)00004-8

Speight, J. G. 2020. Hydrocarbons from crude oil, in J. G. Speight (Ed.). Handbook of Industrial Hydrocarbon Processes, 95–142. https://doi.org/10.1016/b978-0-12-809923-0.00003-5

Speight, J. G. 2011. Hydrocarbons from petroleum, in J. G. Speight (Ed.). Handbook of Industrial Hydrocarbon Processes, 85–126. https://doi.org/10.1016/b978-0-7506-8632-7.10003-9

Wiegmans, B.; Konings, R. 2015. Intermodal inland waterway transport: modelling conditions influencing its cost competitiveness, The Asian Journal of Shipping and Logistics 31(2): 273–294. https://doi.org/10.1016/j.ajsl.2015.06.006

Xu, G.-L.; Yao, C.-D.; Rutland, C. J. 2014. Simulations of diesel–methanol dual-fuel engine combustion with large eddy simulation and Reynolds-averaged Navier–Stokes model, International Journal of Engine Research 15(6): 751–769. https://doi.org/10.1177/1468087413516119