Share:


Examining failures in rubber-cord couplings within ER2 series electric trains

    Pavels Gavrilovs Affiliation
    ; Dmitrijs Gorbacovs Affiliation
    ; Janis Eiduks Affiliation
    ; Guntis Strautmanis Affiliation
    ; Ali Arshad Affiliation

Abstract

The article provides statistics on failures of rubber-cord couplings of electric trains of the ER2 and ER2T series and of the diesel trains over the past 7 years. According to statistics, over the past 7 years, 107 rubber-cord couplings have failed. Of these, the largest number of cases of failure of rubber-cord couplings occurred on rolling stock of the ER2 series. Examining failed rubber-cord couplings, it was revealed that the cause of its failure was a rupture of the side surface. Replacing a rubber-cord coupling is a labour-intensive and costly process. Accordingly, the question arises: what causes the problem and what measures should be proposed to reduce the failures. For these purposes, the work presents a number of experiments in order to identify possible causes of failure of the rubber-cord coupling. The article presents studies of the heating temperature of rubber-cord couplings in operation on motor cars, as well as a number of studies of failed rubber-cord couplings removed from motor cars. During the research, such parameters as the date of the last repair and the date of failure of the rubber-cord coupling were taken into account. The number of days the motor car was in general operation was taken into account until the failure of the rubber-cord coupling, as well as the mileage of the motor car after the repair. Measurements were carried out of the geometric parameters of the rubber-cord coupling: outer and inner diameter, thickness of the side of the rubber-cord coupling. The torque of the rubber-cord coupling acting at speeds from 5 to 40 km/h, the forces acting in operation on the rubber-cord coupling were calculated, and torsional and shear stresses were also studied and determined. Research was carried out to determine the hardness of the rubber-cord coupling in the temperature range from –20 °C to 0 °C and from 0 °C to +22 °C, as well as from +22 °C to +60 °C. These parameters were taken since a rubber-cord coupling operates under the mentioned conditions. In conclusion, possible reasons for the failure of rubber-cord couplings are given, and recommendations for reduction of their frequency are proposed.

Keyword : train, traction gear, rubber-cord coupling, forces and stresses in rubber, Shore A, temperature, electric trains failures

How to Cite
Gavrilovs, P., Gorbacovs, D., Eiduks, J., Strautmanis, G., & Arshad, A. (2024). Examining failures in rubber-cord couplings within ER2 series electric trains. Transport, 39(2), 183–196. https://doi.org/10.3846/transport.2024.22411
Published in Issue
Nov 14, 2024
Abstract Views
79
PDF Downloads
111
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abdelsalam, A. A.; El-Sabbagh, S. H.; Mohamed, W. S.; Khozami, M. A. 2023. Studies on swelling behavior, mechanical and thermal properties of ternary rubber blend composites in the presence of compatibilizers, Pigment & Resin Technology 52(5): 614–623. https://doi.org/10.1108/PRT-02-2022-0020

Ahundov, V. M.; Lunev, V. P. 2011. Raschetnye i jeksperimental’’nye icsledovanija rezinokordnyh obolochek vysokojelastichnyh muft, Problemy obchysljuval’noi’ mehaniky i micnosti konstrukcij 17: 35–42. Available from Internet: https://pommk.dp.ua/index.php/journal/article/view/188 (in Russian).

AS PV. 2021. Elektrovilcienu nobraukumu atskaite. AS “Pasažieru vilciens” (AS PV), Rīga, Latvia. (in Latvian).

Birjukov, I. V.; Beljaev, A. I.; Rybnikov, E. K. 1986. Tjagovye peredachi jelektropodvizhnogo sostava zheleznyh dorog. Moskva: Transport. 256 s. (in Russian).

Cukalo, P. V.; Prosvirin, B. K. 1994. Jekspluatacija jelektropoezdov: spravochnik. Moskva: Transport. 383 s. (in Russian).

DIN 740-1:1986-08. Antriebstechnik; Nachgiebige Wellenkupplungen; Anforderungen, Technische Lieferbedingungen. (in German).

DIN 740-2:1986-08. Antriebstechnik, Nachgiebige Wellenkupplungen, Begriffe und Berechnungsgrundlagen. (in German).

Dunaev, P. V.; Lelikov, O. P. 1984. Detali mashin: kursovoe proektirovanie. Moskva: Vysshaja shkola 1984. 336 s. (in Russian).

Feodos’ev, V. I. 1999. Soprotivlenie materialov: uchebnik dlja vuzov. Moskva: Izdatel‘stvo MGTU im. N. Je. Baumana, 592 s. (in Russian).

Freimane, J.; Mezitis, M.; Mihailovs, F. 2016. Maneuver movements’ safety increase using maneuver locomotive identification and distance control, Procedia Computer Science 104: 375–379. https://doi.org/10.1016/j.procs.2017.01.148

GOST 33188-2014. Mufty tjagovogo privoda motorvagonnogo podvizhnogo sostava. Rezinokordnye obolochki. Obshhie tehnicheskie uslovija [Traction Drive Couplings of Railway Electrical Multiple Units. Rubber Cord Casings. General Specifications]. (in Russian).

Il’ichev, V. A.; Pen’kov, I. A.; Korneev, V. S., Korneev, S. A. 2015. Jeksperimental’nyj stend dlja issledovanija nagruzochnyh harakteristik rezinokordnoj ploskoj mufty, Omskij nauchnyj vestnik 3: 123–126. (in Russian).

Ischuka, O.; Lomotko, D.; Eiduks, J. 2020. Modelling of technology of disassembling and assembling of freight trains at marshalling yard, in Transport Means 2020: Sustainability: Research and Solutions: Proceedings of the 24th International Scientific Conference, 30 September – 2 October 2020, Kaunas, Lithuania, 1: 463–468.

Ischuka, O.; Lomotko, D.; Gavrilovs, P.; Freimane, J. 2019. Improvement of technology of operation for Daugavpils marshalling station by building the new receiving yard, in Transport Means 2019: Sustainability: Research and Solutions: Proceedings of the 23rd International Scientific Conference, 2–4 October 2019, Palanga, Lithuania, 2: 841–846.

ISO 14691:2008. Petroleum, Petrochemical and Natural Gas Industries – Flexible Couplings for Mechanical Power Transmission – General-Purpose Applications.

Korneev, V. S.; Romanyuk, D. A.; Korneev, S. A.; Russkih, G. S.; Vaskova, M. V. 2016. Finite element research of rubber-cord flat coupling, Procedia Engineering 152: 321–326. https://doi.org/10.1016/j.proeng.2016.07.710

Krmela, J.; Krmelova, V. 2017. Tire casings and their material characteristics for computational modeling of tires, in Engineering for Rural Development: 16th International Scientific Conference, 24–26 May 2017, Jelgava, Latvia, 230–235. https://doi.org/10.22616/ERDev2017.16.N043

Levinson, M.; Burgess, I. W. 1971. A comparison of some simple constitutive relations for slightly compressible rubber-like materials, International Journal of Mechanical Sciences 13(6): 563–572. https://doi.org/10.1016/0020-7403(71)90042-7

Li, K.; Chen, Z.; Shi, W. 2022. Rubber aging life prediction based on interpolation and improved time-temperature superposition principle, Materials Research Express 9(1): 015301. https://doi.org/10.1088/2053-1591/ac45ba

Lou, W.; Xie, C.; Guan, X. 2023. Molecular dynamic study of radiation-moisture aging effects on the interface properties of nano-silica/silicone rubber composites, Materials Degradation 7: 32. https://doi.org/10.1038/s41529-023-00351-8

Mahutov, N. A.; Shheglov, B. A.; Evdokimov, A. P. 2005. Snizhenie dinamicheskoj nagruzhennosti i osobennosti raboty silovyh privodov dlja normal’’nyh i vneshtatnyh uslovij, Problemy mashinostroenija i nadezhnosti mashin (2): 87–90. (in Russian).

Mezitis, M.; Panchenko, V.; Kutsenko, M.; Maslii, A. 2019. Mathematical model for defining rational constructional technological parameters of marshalling equipment used during gravitational target braking of retarders, Procedia Computer Science 149: 288–296. https://doi.org/10.1016/j.procs.2019.01.137

Muhitovs, R.; Mezitis, M.; Korago, I. 2020. Development of the railway point electric heating intellectual control algorithm, Transport Problems 15(1): 71–79. Available from Internet: http://transportproblems.polsl.pl/pl/Archiwum/2020/zeszyt1/2020t15z1_07.pdf

Pegov, D. V.; Burcev, P. V.; Andreev, V. E. 2003. Jelektropoezda postojannogo toka: JeT2, JeT2M, JeR2T, JeD2T. Moskva: Centr kommercheskih razrabotok, 184 s. (in Russian).

Savel’ev, I. V. 1970. Kurs obshhej fiziki. Tom 1. Mehanika, kolebanija i volny, molekuljarnaja fizika. Moskva: Nauka. 511 s. (in Russian).

Sheshenin, S. V.; Gritchenko, M. E.; Chistyakov, P. V. 2021. Averging the viscoelastic properties of a rubber-cord ply in a plane stress state, Mechanics of Composite Materials 57(4): 469–480. https://doi.org/10.1007/s11029-021-09970-1

Stojanović, V.; Deng, J.; Milić, D.; Petković, M. D. 2024. Dynamics of moving coupled objects with stabilizers and unconventional couplings, Journal of Sound and Vibration 570: 118020. https://doi.org/10.1016/j.jsv.2023.118020

Strautmanis, G.; Mezitis, M.; Strautmane, V. 2017. The impact of rotor elastic suspension settings on the acceleration of the automatic balancer compensating mass, Vibroengineering Procedia 14: 13–17. https://doi.org/10.21595/vp.2017.18306

VAS LD. 1997. Elektrovilcienu tekošā remontu un tehniskas apkalpošanas noteikumi L31/97. Valsts akciju sabiedrība “Latvijas dzelzceļš” (VAS LD), Rīga, Latvia. 152 lpp. (in Latvian).

Yatsun, V.; Filimonikhin, G.; Haleeva, A.; Krivoblotsky, L.; Machok, Y.; Mezitis, M.; Podoprygora, N.; Sadovyi, M.; Strautmanis, G. 2020. Searching for the two­frequency motion modes of a three-mass vibratory machine with a vibration exciter in the form of a passive auto-balancer, Eastern–European Journal of Enterprise Technologies 4(7): 103–111. https://doi.org/10.15587/1729-4061.2020.209269

Zhang, Z.; Pang, G.; Zheng, H.; Jiang, X.; Li, R. 2023. Failure characterization of silicone rubber in corrosive environments based on leakage current characteristics, IEEE Transactions on Dielectrics and Electrical Insulation 30(4): 1810–1818. https://doi.org/10.1109/TDEI.2023.3236596

Zhou, Z.; Hou, Z.; Guo, J.; Jia, J.; Liu, Z.; Zhao, F.; Li, Y.; Tan, S.; Xin, Z.; Zhao, S.; Li, L. 2023. Study on the fatigue resistance of natural rubber with SiO2 microspheres, Journal of Polymer Research 30(8): 324. https://doi.org/10.1007/s10965-023-03704-8