Share:


Necessary optimality conditions for nonsmooth vector optimization problems

    Davide La Torre Affiliation

Abstract


In this paper we introduce a notion of generalized derivative for nonsmooth vector functions in order to obtain necessary optimality conditions for vector optimization problems. This definition generalizes to the vector case the notion introduced by Michel and Penot and extended by Yang and Jeyakumar. This generalized derivative is contained in the Clarke subdifferential and then the corresponding optimality conditions are sharper than the Clarke's ones.


Būtinos neglodžių vektorių optimizavimo uždavinių optimalios sąlygos


Santrauka. Straipsnyje įvedama apibendrintos išvestinės sąvoka neglodžioms vektor‐funkcijoms, kad galima būtų gauti optimalumo sąlygas vektorių optimizavimo uždaviniams. Šis apibrėžimas apibendrina Michel ir Penot įvestas sąvokas, kurias išplėtė Yang ir Jeyakumar. Išvestinės apibendrinimas įeina į Clarke subdiferencialą, tačiau optimalumo sąlygos yra jautresnės nei Clarko.



First Published Online: 14 Oct 2010

Keyword : vector optimization, generalized derivatives

How to Cite
La Torre, D. (2003). Necessary optimality conditions for nonsmooth vector optimization problems. Mathematical Modelling and Analysis, 8(2), 165-174. https://doi.org/10.3846/13926292.2003.9637221
Published in Issue
Jun 30, 2003
Abstract Views
468
PDF Downloads
308
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.